5,478 research outputs found
Measurements of CKM angles beta/phi_1 and alpha/phi_2 at the BABAR and Belle experiments
We report measurements of the CKM angles beta/phi_1 and alpha/phi_2 done by
the BABAR and Belle experiments. Both experiments have collected large data
samples, corresponding to a total of more than 1 billion of BBbar pairs, at the
e^+e^- asymmetric-energy colliders PEP-II (SLAC) and KEK-B (KEK), respectively.Comment: 6 pages, 1 postscript figure, contributed to the Proceedings of Heavy
Quarks and Leptons, Melbourne, 200
A silicon model of auditory localization
The barn owl accurately localizes sounds in the azimuthal plane, using interaural time difference as a cue. The time-coding pathway in the owl's brainstem encodes a neural map of azimuth, by processing interaural timing information. We have built a silicon model of the time-coding pathway of the owl. The integrated circuit models the structure as well as the function of the pathway; most subcircuits in the chip have an anatomical correlate. The chip computes all outputs in real time, using analog, continuous-time processing
How to enhance crop production and nitrogen fluxes? A result-oriented scheme to evaluate best agri-environmental measures in Veneto Region, Italy
The cost-effectiveness of adopting agri-environmental measures (AEMs) in Europe, which combine agricultural productions with reduced N losses, is debated due to poorly targeted site-specific funding that is allocated regardless of local variability. An integrated DAYCENT model-GIS platform was developed combining pedo-climatic and agricultural systems information. The aim was to evaluate best strategies to improve N fluxes of agro-ecosystems within a perspective of sustainable intensification. Indicators of agronomic efficiency and environmental quality were considered. The results showed that agronomic benefits were observed with a continuous soil cover (conservation agriculture and cover crops), which enhanced nitrogen use efficiency (+17%) and crop yields (+34%), although in some cases these might be overestimated due to modelling limitations. An overall environmental improvement was found with continuous soil cover and long-term change from mineral to organic inputs (NLeach 45 Mg ha 121), which were effective in the sandy soils of western and eastern Veneto with low SOM, improving the soil-water balance and nutrients availability over time. Results suggest that AEM subsidies should be allocated at a site-specific level that includes pedo-climatic variability, following a result-oriented approach
Long-term dynamics of Methone, Anthe and Pallene
We numerically investigate the long-term dynamics of the Saturn's small
satellites Methone (S/2004 S1), Anthe (S/2007 S4) and Pallene (S/2004 S2). In
our numerical integrations, these satellites are disturbed by non-spherical
shape of Saturn and the six nearest regular satellites. The stability of the
small bodies is studied here by analyzing long-term evolution of their orbital
elements.
We show that long-term evolution of Pallene is dictated by a quasi secular
resonance involving the ascending nodes () and longitudes of
pericentric distances () of Mimas (subscript 1) and Pallene (subscript
2), which critical argument is . Long-term
orbital evolution of Methone and Anthe are probably chaotic since: i) their
orbits randomly cross the orbit of Mimas in time scales of thousands years);
ii) numerical simulations involving both small satellites are strongly affected
by small changes in the initial conditions.Comment: 9 pages; 4 figures. Submitted to Proceedings IAU Symposium No. S263,
200
Mitigation of Ar/K background for the GERDA Phase II experiment
Background coming from the Ar decay chain is considered to be one of
the most relevant for the GERDA experiment, which aims to search of the
neutrinoless double beta decay of Ge. The sensitivity strongly relies on
the absence of background around the Q-value of the decay. Background coming
from K, a progeny of Ar, can contribute to that background via
electrons from the continuous spectrum with an endpoint of 3.5 MeV. Research
and development on the suppression methods targeting this source of background
were performed at the low-background test facility LArGe. It was demonstrated
that by reducing K ion collection on the surfaces of the broad energy
germanium detectors in combination with pulse shape discrimination techniques
and an argon scintillation veto, it is possible to suppress the K
background by three orders of magnitude. This is sufficient for Phase II of the
GERDA experiment
Enhancing the significance of gravitational wave bursts through signal classification
The quest to observe gravitational waves challenges our ability to
discriminate signals from detector noise. This issue is especially relevant for
transient gravitational waves searches with a robust eyes wide open approach,
the so called all- sky burst searches. Here we show how signal classification
methods inspired by broad astrophysical characteristics can be implemented in
all-sky burst searches preserving their generality. In our case study, we apply
a multivariate analyses based on artificial neural networks to classify waves
emitted in compact binary coalescences. We enhance by orders of magnitude the
significance of signals belonging to this broad astrophysical class against the
noise background. Alternatively, at a given level of mis-classification of
noise events, we can detect about 1/4 more of the total signal population. We
also show that a more general strategy of signal classification can actually be
performed, by testing the ability of artificial neural networks in
discriminating different signal classes. The possible impact on future
observations by the LIGO-Virgo network of detectors is discussed by analysing
recoloured noise from previous LIGO-Virgo data with coherent WaveBurst, one of
the flagship pipelines dedicated to all-sky searches for transient
gravitational waves
- …