325 research outputs found

    Some Thoughts About The Development Of A Unifying Framework For The Study Of Individual Interest

    Get PDF

    Synthetic biology and biomass conversion: a match made in heaven?

    Get PDF
    To move our economy onto a sustainable basis, it is essential that we find a replacement for fossil carbon as a source of liquid fuels and chemical industry feedstocks. Lignocellulosic biomass, available in enormous quantities, is the only feasible replacement. Many micro-organisms are capable of rapid and efficient degradation of biomass, employing a battery of specialized enzymes, but do not produce useful products. Attempts to transfer biomass-degrading capability to industrially useful organisms by heterologous expression of one or a few biomass-degrading enzymes have met with limited success. It seems probable that an effective biomass-degradation system requires the synergistic action of a large number of enzymes, the individual and collective actions of which are poorly understood. By offering the ability to combine any number of transgenes in a modular, combinatorial way, synthetic biology offers a new approach to elucidating the synergistic action of combinations of biomass-degrading enzymes in vivo and may ultimately lead to a transferable biomass-degradation system. Also, synthetic biology offers the potential for assembly of novel product-formation pathways, as well as mechanisms for increased solvent tolerance. Thus, synthetic biology may finally lead to cheap and effective processes for conversion of biomass to useful products

    Interaction-free measurement and forward scattering

    Get PDF
    Interaction-free measurement is shown to arise from the forward-scattered wave accompanying absorption: a "quantum silhouette" of the absorber. Accordingly, the process is not free of interaction. For a perfect absorber the forward-scattered wave is locked both in amplitude and in phase. For an imperfect one it has a nontrivial phase of dynamical origin (``colored silhouette"), measurable by interferometry. Other examples of quantum silhouettes, all controlled by unitarity, are briefly discussed.Comment: 4 pages in RevTex + 1 figure in eps; submitted to Phys. Rev. A since 09Jan98; now update

    Are Interaction-free Measurements Interaction Free?

    Full text link
    In 1993 Elitzur and Vaidman introduced the concept of interaction-free measurements which allowed finding objects without ``touching'' them. In the proposed method, since the objects were not touched even by photons, thus, the interaction-free measurements can be called as ``seeing in the dark''. Since then several experiments have been successfully performed and various modifications were suggested. Recently, however, the validity of the term ``interaction-free'' has been questioned. The criticism of the name is briefly reviewed and the meaning of the interaction-free measurements is clarified.Comment: 11 pages, 3 eps figures. Contribution to the ICQO 2000, Raubichi, Belaru

    Quantum coherence and interaction-free measurements

    Get PDF
    We investigate the extent to which ``interaction-free'' measurements perturb the state of quantum systems. We show that the absence of energy exchange during the measurement is not a sufficient criterion to preserve that state, as the quantum system is subject to measurement dependent decoherence. While it is possible in general to design interaction-free measurement schemes that do preserve that state, the requirement of quantum coherence preservation rapidly leads to a very low efficiency. Our results, which have a simple interpretation in terms of ``which-way'' arguments, open up the way to novel quantum non-demolition techniques.Comment: 4 pages incl. 2 PostScript figures (.eps), LaTeX using RevTeX, submitted to Phys. Rev. A (Rapid Comm.

    Entanglement Creation Using Quantum Interrogation

    Get PDF
    We present some applications of high efficiency quantum interrogation ("interaction free measurement") for the creation of entangled states of separate atoms and of separate photons. The quantum interrogation of a quantum object in a superposition of object-in and object-out leaves the object and probe in an entangled state. The probe can then be further entangled with other objects in subsequent quantum interrogations. By then projecting out those cases were the probe is left in a particular final state, the quantum objects can themselves be left in various entangled states. In this way we show how to generate two-, three-, and higher qubit entanglement between atoms and between photons. The effect of finite efficiency for the quantum interrogation is delineated for the various schemes.Comment: 7 pages, 13 figures, Submitted to PR

    Modelling search for people in 900 scenes: A combined source model of eye guidance

    Get PDF
    How predictable are human eye movements during search in real world scenes? We recorded 14 observers’ eye movements as they performed a search task (person detection) in 912 outdoor scenes. Observers were highly consistent in the regions fixated during search, even when the target was absent from the scene. These eye movements were used to evaluate computational models of search guidance from three sources: Saliency, target features, and scene context. Each of these models independently outperformed a cross-image control in predicting human fixations. Models that combined sources of guidance ultimately predicted 94% of human agreement, with the scene context component providing the most explanatory power. None of the models, however, could reach the precision and fidelity of an attentional map defined by human fixations. This work puts forth a benchmark for computational models of search in real world scenes. Further improvements in modelling should capture mechanisms underlying the selectivity of observers’ fixations during search.National Eye Institute (Integrative Training Program in Vision grant T32 EY013935)Massachusetts Institute of Technology (Singleton Graduate Research Fellowship)National Science Foundation (U.S.) (Graduate Research Fellowship)National Science Foundation (U.S.) (CAREER Award (0546262))National Science Foundation (U.S.) (NSF contract (0705677))National Science Foundation (U.S.) (Career Award (0747120)

    On the Consequences of Retaining the General Validity of Locality in Physical Theory

    Full text link
    The empirical validity of the locality (LOC) principle of relativity is used to argue in favour of a local hidden variable theory (HVT) for individual quantum processes. It is shown that such a HVT may reproduce the statistical predictions of quantum mechanics (QM), provided the reproducibility of initial hidden variable states is limited. This means that in a HVT limits should be set to the validity of the notion of counterfactual definiteness (CFD). This is supported by the empirical evidence that past, present, and future are basically distinct. Our argumentation is contrasted with a recent one by Stapp resulting in the opposite conclusion, i.e. nonlocality or the existence of faster-than-light influences. We argue that Stapp's argumentation still depends in an implicit, but crucial, way on both the notions of hidden variables and of CFD. In addition, some implications of our results for the debate between Bohr and Einstein, Podolsky and Rosen are discussed.Comment: revtex, 11 page
    corecore