1,214 research outputs found
Traffic Fractal Analysis and the Determine the Probability Call Blocking in Cellular Mobile Networks
The purpose of this article is analysis of fractal properties of traffic and its influence on the characteristics of telecommunication systems for a given quality of service (QoS) as invariant to scale throbbing traffic structure can significantly influence the network performance. Analysis of the causes and consequences of fractal in traffic, and to identify areas handover is an important task in the modeling of radio coverage in the environment base stations Radio Mobile [1]. The numerical analysis model is incomplete two streams available system of mass service (SMS) with expectations calling for the handover and determine the probability of each new call blocking, call handover-and-multiple-call handover in a mobile network cell
Adaptive system of supplying lubricant to the internal combustion engine
Β© Published under licence by IOP Publishing Ltd. This paper assesses the impact of reducing the pressure in the lubrication system on the failures of the crankshaft bearings. The method of adapting lubricating system of the diesel engine as the wear in operation and depending on the operation modes
Observation of superluminal geometrical resonances in Bi2Sr2CaCu2O8+x intrinsic Josephson junctions
We study Fiske steps in small Bi2Sr2CaCu2O8+x mesa structures, containing
only few stacked intrinsic Josephson junctions. Careful alignment of magnetic
field prevents penetration of Abrikosov vortices and facilitates observation of
a large variety of high quality geometrical resonances, including superluminal
with velocities larger than the slowest velocity of electromagnetic waves. A
small number of junctions limits the number of resonant modes and allows
accurate identification of modes and velocities. It is shown that superluminal
geometrical resonances can be excited by subluminal fluxon motion and that
flux-flow itself becomes superluminal at high magnetic fields. We argue that
observation of high-quality superluminal geometrical resonances is crucial for
realization of the coherent flux-flow oscillator in the THz frequency range
Effective attraction between oscillating electrons in a plasmoid via acoustic waves exchange
We consider the effective interaction between electrons due to the exchange
of virtual acoustic waves in a low temperature plasma. Electrons are supposed
to participate in rapid radial oscillations forming a spherically symmetric
plasma structure. We show that under certain conditions this effective
interaction can result in the attraction between oscillating electrons and can
be important for the dynamics of a plasmoid. Some possible applications of the
obtained results to the theory of natural long-lived plasma structures are also
discussed.Comment: 14 pages in LaTeX2e, two columns, 3 eps figures; minimal changes,
some typos are corrected; version published on-line in Proc. R. Soc.
Spin-controlled Mott-Hubbard bands in LaMnO_3 probed by optical ellipsometry
Spectral ellipsometry has been used to determine the dielectric function of
an untwinned crystal of LaMnO_3 in the spectral range 0.5-5.6 eV at
temperatures 50 K < T < 300 K. A pronounced redistribution of spectral weight
is found at the Neel temperature T_N = 140 K. The anisotropy of the spectral
weight transfer matches the magnetic ordering pattern. A superexchange model
quantitatively describes spectral weight transfer induced by spin correlations.
This analysis implies that the lowest-energy transitions around 2 eV are
intersite d-d transitions, and that LaMnO_3 is a Mott-Hubbard insulator.Comment: 4 pages, 4 figure
Objects Reconstruction By Compressive Sensing from Single-pixel Registrations Using DMD
Compressive sensing allows to reconstruct information from a number of sparse signals. Use of digital micromirror device (DMD) between object and single-pixel detector planes is example of sparse signals registration technique. Detection of illumination from the objects by a single-pixel detector using a DMD was modeled. Grayscale, binary and color object images were used as objects. By compressed sensing images obtained under various recording conditions were reconstructed. Obtained results were analyzed. Reconstruction quality estimations and processing times are given.
Keywords: compressed sensing, single-pixel imaging, digital micromirror device, image quality
Investigation of the Summer Kara Sea Circulation Employing a Variational Data Assimilation Technique
[ 1] The summer circulations and hydrographic fields of the Kara Sea are reconstructed for mean, positive and negative Arctic Oscillation regimes employing a variational data assimilation technique which provides the best fit of reconstructed fields to climatological data and satisfies dynamical and kinematic constraints of a quasi-stationary primitive equation ocean circulation model. The reconstructed circulations agree well with the measurements and are characterized by inflow of 0.63, 0.8, 0.51 Sv through Kara Gate and 1.18, 1.1, 1.12 Sv between Novaya Zemlya and Franz Josef Land, for mean climatologic conditions, positive and negative AO indexes, respectively. The major regions of water outflow for these regimes are the St. Anna Trough (1.17, 1.21, 1.34 Sv) and Vilkitsky/ Shokalsky Straits (0.52, 0.7, 0.51 Sv). The optimized velocity pattern for the mean climatological summer reveals a strong anticyclonic circulation in the central part of the Kara Sea ( Region of Fresh Water Inflow, ROFI zone) and is confirmed by ADCP surveys and laboratory modeling. This circulation is well pronounced for both high and low AO phases, but in the positive AO phase it is shifted approximately 200 km west relatively to its climatological center. During the negative AO phase the ROFI locaion is close to its climatological position. The results of the variational data assimilation approach were compared with the simulated data from the Hamburg Shelf Ocean Model (HAMSOM) and Naval Postgraduate School 18 km resolution (NPS-18) model to validate these models
- β¦