162 research outputs found
Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes
The electronic properties of p-doped single-walled carbon nanotube (SWNT) bulk samples were studied by temperature-dependent resistivity and thermopower, optical reflectivity, and Raman spectroscopy. These all give consistent results for the Fermi level downshift (Delta E(F)) induced by doping. We find Delta E(F) approximate to 0.35 eV and 0.50 eV for concentrated nitric and sulfuric acid doping respectively. With these values, the evolution of Raman spectra can be explained by variations in the resonance condition as E(F) moves down into the valence band. Furthermore, we find no evidence for diameter-selective doping, nor any distinction between doping responses of metallic and semiconducting tubes
Synthesis of zeolitic imidazolate framework-8 using an electric field in a gelled medium
Using the ion migration in various gel mediums governed by a direct electric field is a well-known technique, especially in analytical chemistry, to separate charged chemical species. This approach is also suitable for generating different-sized crystals and controlling the pattern formation in gels. Here we present a synthesis of zeolitic imidazolate framework-8 in an agarose gel driven by a direct electric field. We investigate the effect of an applied electric current on the macroscopic pattern formed in the gel, morphology, size, and dispersity of the ZIF-8 crystals. Upon increasing the electric current, the average size of the particles and dispersity of the samples decreased along the gel tube from the liquid-gel interface of the anodic side. This trend is opposite to the results obtained in synthesising particles utilizing only diffusion for mass transport. The electric field caused peak-doubling in the X-ray diffraction (XRD) pattern. To support the experimental observations, we developed a reaction-diffusion-migration model, which qualitatively describes the pattern formation observed in experiments.A direct electric field can be used to control the synthesis of the metal-organic framework in a gelled medium. The average size and dispersity of the crystals can be directed by the electric field strength
Electronic structure and dynamics of optically excited single-wall carbon nanotubes
We have studied the electronic structure and charge-carrier dynamics of
individual single-wall carbon nanotubes (SWNTs) and nanotube ropes using
optical and electron-spectroscopic techniques. The electronic structure of
semiconducting SWNTs in the band-gap region is analyzed using near-infrared
absorption spectroscopy. A semi-empirical expression for
transition energies, based on tight-binding calculations is found to give
striking agreement with experimental data. Time-resolved PL from dispersed
SWNT-micelles shows a decay with a time constant of about 15 ps. Using
time-resolved photoemission we also find that the electron-phonon ({\it e-ph})
coupling in metallic tubes is characterized by a very small {\it e-ph}
mass-enhancement of 0.0004. Ultrafast electron-electron scattering of
photo-excited carriers in nanotube ropes is finally found to lead to internal
thermalization of the electronic system within about 200 fs.Comment: 10 pages, 10 figures, submitted to Applied Physics
Fe/Co Alloys for the Catalytic Chemical Vapor Deposition Synthesis of Single- and Double-Walled Carbon Nanotubes (CNTs). 1. The CNT−Fe/Co−MgO System
Mg0.90FexCoyO (x + y ) 0.1) solid solutions were synthesized by the ureic combustion route. Upon reduction at 1000 °C in H2-CH4 of these powders, Fe/Co alloy nanoparticles are formed, which are involved in the formation of carbon nanotubes, which are mostly single and double walled, with an average diameter close to 2.5 nm. Characterizations of the materials are performed using 57Fe Mo¨ssbauer spectroscopy and electron microscopy, and a well-established macroscopic method, based on specific-surface-area measurements, was applied to quantify the carbon quality and the nanotubes quantity. A detailed investigation of the Fe/Co alloys’ formation and composition is reported. An increasing fraction of Co2+ ions hinders the dissolution of iron in the MgO lattice and favors the formation of MgFe2O4-like particles in the oxide powders. Upon reduction, these particles form R-Fe/Co particles with a size and composition (close to Fe0.50Co0.50) adequate for the increased production of carbon nanotubes. However, larger particles are also produced resulting in the formation of undesirable carbon species. The highest CNT quantity and carbon quality are eventually obtained upon reduction of the iron-free Mg0.90Co0.10O solid solution, in the absence of clusters of metal ions in the starting material. Introduction Catalyti
A film-forming graphene/diketopyrrolopyrrole covalent hybrid with far-red optical features: Evidence of photo-stability
A dianiline derivative of a symmetric donor-acceptor-donor diketopyrrolopyrrole-based dye is employed for the two-sided covalent functionalization of liquid exfoliated few layers graphene flakes, through a direct arylation reaction. The resulting nanohybrid features the properties of a polymeric species, being solution-processed into homogeneous thin films, featuring a pronounced red-shift of the main absorption band with respect to the model dye unit and energy levels comparable to those of common diketopyrrolopyrrole-based polymers. A good electrical conductivity and the absence of radical signals generated after intense white light illumination, as probed through electron paramagnetic resonance, suggest a possible future application of this composite ma- terial in the field of photoprotective, antistatic layers with tunable colors
Cu–Fe Incorporated Graphene-Oxide Nanocomposite as Highly Efficient Catalyst in the Degradation of Dichlorodiphenyltrichloroethane (DDT) from Aqueous Solution
Fe/graphene oxide and Cu–Fe/graphene oxide nanocomposite were synthesized by the atomic implantation method to study the photocatalytic degradation of dichlorodiphenyltrichloroethane (DDT). The synthesized nanocomposites were characterized by the XRD, N2 isotherms, SEM with EDX, TEM and XPS analysis. Characterization results have reported that oxides of Cu and Fe were uniformly distributed on graphene oxide and exited in the form of Cu+ and Fe2+ ions in Cu–Fe/graphene oxide nanocomposite. The high photocatalytic DDT removal efficiency 99.7% was obtained for Cu–Fe/graphene oxide under the optimal condition of 0.2 g/L catalyst, 15 mg/L H2O2 and pH 5. It was attributed to the reduction of Fe3+ to Fe2+ by Cu+ ions and –OH radicals formation. However, it was dropped to 90.4% in the recycling study by leaching of iron and without a change in phase structure and morphology
Overgrowth of rhodium on gold nanorods
[Image: see text] This study focuses on the deposition and growth mode of rhodium (Rh) on gold (Au) seed nanorods (NRs). Using a combination of scanning transmission electron microscopy imaging, energy-dispersive X-ray spectroscopy, and UV–visible absorption spectroscopy, we show that Rh deposition results in an uneven overlayer morphology on the Au NR seeds, with a tendency for Rh deposition to occur preferentially on the Au NR ends. The results suggest that complex and kinetically driven metal–metal interactions take place in this system
- …