293 research outputs found

    Understanding co-operative R&D activity: evidence from four European countries

    Get PDF
    This paper investigates co-operative research activity by firms using data from the 3rd Community Innovation Survey for four countries, France, Germany, Spain and the UK. We build on the Cassiman and Veugelers (CV) (2002) study of Belgian manufacturing firms, by incorporating information on the service sector, and considering the role of public support in affecting firms’ decisions to co-operate. Our results support those in CV, in that we find a positive relationship between the likelihood of undertaking co-operative R&D and both incoming knowledge spillovers and the extent to which firms find strategic methods important in appropriating the returns to innovative activity. We find that public support is positively related to the probability of undertaking co-operative agreements particularly with regard to the likelihood of co-operation with the research base. We find some evidence, in particular for Spain, that firms carry out co-operative R&D to overcome excessive perceived risks and financial constraints

    Electron screening and its effects on Big-Bang nucleosynthesis

    Full text link
    We study the effects of electron screening on nuclear reaction rates occurring during the Big Bang nucleosynthesis epoch. The sensitivity of the predicted elemental abundances on electron screening is studied in details. It is shown that electron screening does not produce noticeable results in the abundances unless the traditional Debye-H\"uckel model for the treatment of electron screening in stellar environments is enhanced by several orders of magnitude. The present work rules out electron screening as a relevant ingredient to Big Bang nucleosynthesis and ruling out exotic possibilities for the treatment of screening, beyond the mean-field theoretical approach.Comment: 4 pages, 4 figures, more references included. To appear in Phys. Rev.

    Kadanoff-Baym equations and non-Markovian Boltzmann equation in generalized T-matrix approximation

    Full text link
    A recently developed method for incorporating initial binary correlations into the Kadanoff-Baym equations (KBE) is used to derive a generalized T-matrix approximation for the self-energies. It is shown that the T-matrix obtains additional contributions arising from initial correlations. Using these results and taking the time-diagonal limit of the KBE, a generalized quantum kinetic equation in binary collision approximation is derived. This equation is a far-reaching generalization of Boltzmann-type kinetic equations: it selfconsistently includes memory effects (retardation, off-shell T-matrices) as well as many-particle effects (damping, in-medium T-Matrices) and spin-statistics effects (Pauli-blocking).Comment: 9 pages, 7 figures, corrected misprints in eqs. 48-5

    Spin contribution to the ponderomotive force in a plasma

    Full text link
    The concept of a ponderomotive force due to the intrinsic spin of electrons is developed. An expression containing both the classical as well as the spin-induced ponderomotive force is derived. The results are used to demonstrate that an electromagnetic pulse can induce a spin-polarized plasma. Furthermore, it is shown that for certain parameters, the nonlinear back-reaction on the electromagnetic pulse from the spin magnetization current can be larger than that from the classical free current. Suitable parameter values for a direct test of this effect are presented.Comment: 4 pages, 2 figures, version accepted for publication in Physical Review Letter

    Dust ion-acoustic shocks in quantum dusty pair-ion plasmas

    Full text link
    The formation of dust ion-acoustic shocks (DIASs) in a four-component quantum plasma whose constituents are electrons, both positive and negative ions and immobile charged dust grains, is studied. The effects of both the dissipation due to kinematic viscosity and the dispersion caused by the charge separation as well as the quantum tunneling due to the Bohm potential are taken into account. The propagation of small but finite amplitude dust ion-acoustic waves (DIAWs) is governed by the Korteweg-de Vries-Burger (KdVB) equation which exhibits both oscillatory and monotonic shocks depending not only on the viscosity parameters, but also on the quantum parameter H (the ratio of the electron plasmon to the electron Fermi energy) and the positive to negative ion density ratio. Large amplitude stationary shocks are recovered for a Mach number exceeding its critical value. Unlike the small amplitude shocks, quite a smaller value of the viscosity parameter, H and the density ratio may lead to the large amplitude monotonic shock strucutres. The results could be of importance in astrophysical and laser produced plasmas.Comment: 15 pages, 5 figure

    Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions

    Get PDF
    Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO2 availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24°C, and present day and next century applied atmospheric pCO2, respectively. In both species, individual strains were affected in different ways by increased temperature and pCO2. The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO2 on growth—slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO2. Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO2 supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO2 conditions, with potentially severe consequences for the coastal ecosystem

    Harmonics generation in electron-ion collisions in a short laser pulse

    Full text link
    Anomalously high generation efficiency of coherent higher field-harmonics in collisions between {\em oppositely charged particles} in the field of femtosecond lasers is predicted. This is based on rigorous numerical solutions of a quantum kinetic equation for dense laser plasmas which overcomes limitations of previous investigations.Comment: 4 pages, 4 eps-figures include

    From extended phase space dynamics to fluid theory

    Full text link
    We derive a fluid theory for spin-1/2 particles starting from an extended kinetic model based on a spin-projected density matrix formalism. The evolution equation for the spin density is found to contain a pressure-like term. We give an example where this term is important by looking at a linear mode previously found in a spin kinetic model.Comment: 4 page

    New Quantum Limits in Plasmonic Devices

    Full text link
    Surface plasmon polaritons (SPPs) have recently been recognized as an important future technique for microelectronics. Such SPPs have been studied using classical theory. However, current state-of-the-art experiments are rapidly approaching nanoscales, and quantum effects can then become important. Here we study the properties of quantum SPPs at the interface between an electron quantum plasma and a dielectric material. It is shown that the effect of quantum broadening of the transition layer is most important. In particular, the damping of SPPs does not vanish even in the absence of collisional dissipation, thus posing a fundamental size limit for plasmonic devices. Consequences and applications of our results are pointed out.Comment: 5 pages, 2 figures, to appear in Europhysics Letter
    • …
    corecore