214 research outputs found
The effect of crystal orientation on the cryogenic strength of hydroxide catalysis bonded sapphire
Hydroxide catalysis bonding has been used in gravitational wave detectors to precisely and securely join components of quasi-monolithic silica suspensions. Plans to operate future detectors at cryogenic temperatures has created the
need for a change in the test mass and suspension material. Mono-crystalline sapphire is one candidate material for use at cryogenic temperatures and is being investigated for use in the KAGRA detector. The crystalline structure of sapphire may influence the properties of the hydroxide catalysis bond formed. Here, results are presented of studies of the potential influence of the crystal orientation of sapphire on the shear strength of the hydroxide catalysis bonds formed between sapphire samples. The strength was tested at approximately 8 K; this is the first measurement of the strength of such bonds between
sapphire at such reduced temperatures. Our results suggest that all orientation combinations investigated produce bonds of sufficient strength for use in typical mirror suspension designs, with average strengths >23 MPa
Strong reduction of laser power noise by means of a Kerr nonlinear cavity
We demonstrated the power noise reduction of a continuous-wave laser field by means of an effective third-order Kerr nonlinear cavity. In contrast to conventional noise reduction schemes relying on linear cavities, a strong noise suppression at Fourier frequencies below the linewidth of the nonlinear cavity was possible. The laser light was reflected off a Kerr nonlinear cavity that had a half width half maximum linewidth of 4.5 MHz. The cavity was operated slightly off-resonance at approximately half of the maximum power buildup, close to its so-called critical state; a power noise reduction of up to 32 dB at Fourier frequencies below 1 MHz was observed after reflection. The effective third-order nonlinearity was a so-called cascaded second-order nonlinearity of MgO:LiNbO3. The laser had a power of 0.75 W at the wavelength of 1064 nm
Long-term stable squeezed vacuum state of light for gravitational wave detectors
Currently, the German/British gravitational wave detector GEO600 is being
upgraded in course of the GEO-HF program. One part of this upgrade consists of
the integration of a squeezed light laser to nonclassically improve the
detection sensitivity at frequencies where the instrument is limited by shot
noise. This has been achieved recently [1]. The permanent employment of
squeezed light in gravitational wave observatories requires a long-term
stability of the generated squeezed state. In this paper, we discuss an
unwanted mechanism that can lead to a varying squeezing factor along with a
changing phase of the squeezed field. We present an extension of the
implemented coherent control scheme [2] that allowed an increase in the
long-term stability of the GEO600 squeezed light laser. With it, a quantum
noise reduction by more than 9 dB in the frequency band of 10 Hz - 10 kHz was
observed over up to 20 hours with a duty cycle of more than 99%
GEO 600 and the GEO-HF upgrade program: successes and challenges
The German-British laser-interferometric gravitational wave detector GEO 600
is in its 14th year of operation since its first lock in 2001. After GEO 600
participated in science runs with other first-generation detectors, a program
known as GEO-HF began in 2009. The goal was to improve the detector sensitivity
at high frequencies, around 1 kHz and above, with technologically advanced yet
minimally invasive upgrades. Simultaneously, the detector would record science
quality data in between commissioning activities. As of early 2014, all of the
planned upgrades have been carried out and sensitivity improvements of up to a
factor of four at the high-frequency end of the observation band have been
achieved. Besides science data collection, an experimental program is ongoing
with the goal to further improve the sensitivity and evaluate future detector
technologies. We summarize the results of the GEO-HF program to date and
discuss its successes and challenges
Balanced Homodyne Detection of Optical Quantum States at Audio-Band Frequencies and Below
The advent of stable, highly squeezed states of light has generated great
interest in the gravitational wave community as a means for improving the
quantumnoise- limited performance of advanced interferometric detectors. To
confidently measure these squeezed states, it is first necessary to measure the
shot-noise across the frequency band of interest. Technical noise, such as
non-stationary events, beam pointing, and parasitic interference, can corrupt
shot-noise measurements at low Fourier frequencies, below tens of kilo-Hertz.
In this paper we present a qualitative investigation into all of the relevant
noise sources and the methods by which they can be identified and mitigated in
order to achieve quantum noise limited balanced homodyne detection. Using these
techniques, flat shot-noise down to Fourier frequencies below 0.5 Hz is
produced. This enables the direct observation of large magnitudes of squeezing
across the entire audio-band, of particular interest for ground-based
interferometric gravitational wave detectors. 11.6 dB of shot-noise suppression
is directly observed, with more than 10 dB down to 10 Hz.Comment: 16 pages, 11 figure
Indium joints for cryogenic gravitational wave detectors
A viable technique for the preparation of highly thermal conductive joints between sapphire components in gravitational wave detectors is presented. The mechanical loss of such a joint was determined to be as low as 2 × 10−3 at 20 K and 2 × 10−2 at 300 K. The thermal noise performance of a typical joint is compared to the requirements of the Japanese gravitational wave detector, KAGRA. It is shown that using such an indium joint in the suspension system allows it to operate with low thermal noise. Additionally, results on the maximum amount of heat which can be extracted via indium joints are presented. It is found that sapphire parts, joined by means of indium, are able to remove the residual heat load in the mirrors of KAGRA
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50--1100 Hz and with the frequency's
time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight
months of the fifth LIGO science run (S5) have been used in this search, which
is based on a semi-coherent method (PowerFlux) of summing strain power.
Observing no evidence of periodic gravitational radiation, we report 95%
confidence-level upper limits on radiation emitted by any unknown isolated
rotating neutron stars within the search range. Strain limits below 1.E-24 are
obtained over a 200-Hz band, and the sensitivity improvement over previous
searches increases the spatial volume sampled by an average factor of about 100
over the entire search band. For a neutron star with nominal equatorial
ellipticity of 1.0E-6, the search is sensitive to distances as great as 500
pc--a range that could encompass many undiscovered neutron stars, albeit only a
tiny fraction of which would likely be rotating fast enough to be accessible to
LIGO. This ellipticity is at the upper range thought to be sustainable by
conventional neutron stars and well below the maximum sustainable by a strange
quark star.Comment: 6 pages, 1 figur
Search for Gravitational Wave Bursts from Six Magnetars
Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search
method is used, "stacking'' the GW data around the times of individual
soft-gamma bursts in the storm to enhance sensitivity for models in which
multiple bursts are accompanied by GW emission. We assume that variation in the
time difference between burst electromagnetic emission and potential burst GW
emission is small relative to the GW signal duration, and we time-align GW
excess power time-frequency tilings containing individual burst triggers to
their corresponding electromagnetic emissions. We use two GW emission models in
our search: a fluence-weighted model and a flat (unweighted) model for the most
electromagnetically energetic bursts. We find no evidence of GWs associated
with either model. Model-dependent GW strain, isotropic GW emission energy
E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of
assumed waveforms. The stacking method allows us to set the most stringent
model-dependent limits on transient GW strain published to date. We find E_GW
upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg
and 6x10^50 erg depending on waveform type. These limits are an order of
magnitude lower than upper limits published previously for this storm and
overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure
- …