433 research outputs found

    On Exact Solutions to the Cylindrical Poisson-Boltzmann Equation with Applications to Polyelectrolytes

    Full text link
    Using exact results from the theory of completely integrable systems of the Painleve/Toda type, we examine the consequences for the theory of polyelectrolytes in the (nonlinear) Poisson-Boltzmann approximation.Comment: 12 pages, 4 figures, LaTeX fil

    Screening of Spherical Colloids beyond Mean Field -- A Local Density Functional Approach

    Get PDF
    We study the counterion distribution around a spherical macroion and its osmotic pressure in the framework of the recently developed Debye-H"uckel-Hole-Cavity (DHHC) theory. This is a local density functional approach which incorporates correlations into Poisson-Boltzmann theory by adding a free energy correction based on the One Component Plasma. We compare the predictions for ion distribution and osmotic pressure obtained by the full theory and by its zero temperature limit with Monte Carlo simulations. They agree excellently for weakly developed correlations and give the correct trend for stronger ones. In all investigated cases the DHHC theory and its computationally simpler zero temperature limit yield better results than the Poisson-Boltzmann theory.Comment: 10 pages, 4 figures, 2 tables, RevTeX4-styl

    Attraction between DNA molecules mediated by multivalent ions

    Get PDF
    The effective force between two parallel DNA molecules is calculated as a function of their mutual separation for different valencies of counter- and salt ions and different salt concentrations. Computer simulations of the primitive model are used and the shape of the DNA molecules is accurately modelled using different geometrical shapes. We find that multivalent ions induce a significant attraction between the DNA molecules whose strength can be tuned by the averaged valency of the ions. The physical origin of the attraction is traced back either to electrostatics or to entropic contributions. For multivalent counter- and monovalent salt ions, we find a salt-induced stabilization effect: the force is first attractive but gets repulsive for increasing salt concentration. Furthermore, we show that the multivalent-ion-induced attraction does not necessarily correlate with DNA overcharging.Comment: 51 pages and 13 figure

    Hidden Markov Model Variants and their Application

    Get PDF
    Markov statistical methods may make it possible to develop an unsupervised learning process that can automatically identify genomic structure in prokaryotes in a comprehensive way. This approach is based on mutual information, probabilistic measures, hidden Markov models, and other purely statistical inputs. This approach also provides a uniquely common ground for comparative prokaryotic genomics. The approach is an on-going effort by its nature, as a multi-pass learning process, where each round is more informed than the last, and thereby allows a shift to the more powerful methods available for supervised learning at each iteration. It is envisaged that this "bootstrap" learning process will also be useful as a knowledge discovery tool. For such an ab initio prokaryotic gene-finder to work, however, it needs a mechanism to identify critical motif structure, such as those around the start of coding or start of transcription (and then, hopefully more). For eukaryotes, even with better start-of-coding identification, parsing of eukaryotic coding regions by the HMM is still limited by the HMM's single gene assumption, as evidenced by the poor performance in alternatively spliced regions. To address these complications an approach is described to expand the states in a eukaryotic gene-predictor HMM, to operate with two layers of DNA parsing. This extension from the single layer gene prediction parse is indicated after preliminary analysis of the C. elegans alt-splice statistics. State profiles have made use of a novel hash-interpolating MM (hIMM) method. A new implementation for an HMM-with-Duration is also described, with far-reaching application to gene-structure identification and analysis of channel current blockade data

    Controlled release from zein matrices: Interplay of drug hydrophobicity and pH

    Get PDF
    Purpose: In earlier studies, the corn protein zein is found to be suitable as a sustained release agent, yet the range of drugs for which zein has been studied remains small. Here, zein is used as a sole excipient for drugs differing in hydrophobicity and isoelectric point: indomethacin, paracetamol and ranitidine. Methods: Caplets were prepared by hot-melt extrusion (HME) and injection moulding (IM). Each of the three model drugs were tested on two drug loadings in various dissolution media. The physical state of the drug, microstructure and hydration behaviour were investigated to build up understanding for the release behaviour from zein based matrix for drug delivery. Results: Drug crystallinity of the caplets increases with drug hydrophobicity. For ranitidine and indomethacin, swelling rates, swelling capacity and release rates were pH dependent as a consequence of the presence of charged groups on the drug molecules. Both hydration rates and release rates could be approached by existing models. Conclusion: Both the drug state as pH dependant electrostatic interactions are hypothesised to influence release kinetics. Both factors can potentially be used factors influencing release kinetics release, thereby broadening the horizon for zein as a tuneable release agent

    The osmotic pressure of charged colloidal suspensions: A unified approach to linearized Poisson-Boltzmann theory

    Full text link
    We study theoretically the osmotic pressure of a suspension of charged objects (e.g., colloids, polyelectrolytes, clay platelets, etc.) dialyzed against an electrolyte solution using the cell model and linear Poisson-Boltzmann (PB) theory. From the volume derivative of the grand potential functional of linear theory we obtain two novel expressions for the osmotic pressure in terms of the potential- or ion-profiles, neither of which coincides with the expression known from nonlinear PB theory, namely, the density of microions at the cell boundary. We show that the range of validity of linearization depends strongly on the linearization point and proof that expansion about the selfconsistently determined average potential is optimal in several respects. For instance, screening inside the suspension is automatically described by the actual ionic strength, resulting in the correct asymptotics at high colloid concentration. Together with the analytical solution of the linear PB equation for cell models of arbitrary dimension and electrolyte composition explicit and very general formulas for the osmotic pressure ensue. A comparison with nonlinear PB theory is provided. Our analysis also shows that whether or not linear theory predicts a phase separation depends crucially on the precise definition of the pressure, showing that an improper choice could predict an artificial phase separation in systems as important as DNA in physiological salt solution.Comment: 16 pages, 5 figures, REVTeX4 styl

    Transport phenomena in electrolyte solutions: Non-equilibrium thermodynamics and statistical mechanics

    Full text link
    The theory of transport phenomena in multicomponent electrolyte solutions is presented here through the integration of continuum mechanics, electromagnetism, and non-equilibrium thermodynamics. The governing equations of irreversible thermodynamics, including balance laws, Maxwell's equations, internal entropy production, and linear laws relating the thermodynamic forces and fluxes, are derived. Green-Kubo relations for the transport coefficients connecting electrochemical potential gradients and diffusive fluxes are obtained in terms of the flux-flux time correlations. The relationship between the derived transport coefficients and those of the Stefan-Maxwell and infinitely dilute frameworks are presented, and the connection between the transport matrix and experimentally measurable quantities is described. To exemplify application of the derived Green-Kubo relations in molecular simulations, the matrix of transport coefficients for lithium and chloride ions in dimethyl sulfoxide is computed using classical molecular dynamics and compared with experimental measurements.Comment: fixed typos, added references, addressed comment

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
    corecore