802 research outputs found
Higgs Phenomenology of Minimal Universal Extra Dimensions
The minimal model of Universal Extra Dimensions (MUED) is briefly reviewed.
We explain how the cross-sections for Higgs production via gluon fusion and
decay into two photons are modified, relative the the Standard Model (SM)
values, by KK particles running in loops, leading to an enhancement of the gg
to h to two photons and gg to h to W+W- cross-sections. ATLAS and CMS searches
for the SM Higgs in these channels are reinterpreted in the context of MUED and
used to place new limits on the MUED parameter space. Only a small region of
between 1 and 3 GeV around mh = 125 GeV for 500 GeV < 1/R < 1600 GeV remains
open at the 95 % confidence level.Comment: Presented at the 2011 Hadron Collider Physics symposium (HCP-2011),
Paris, France, November 14-18 2011, 3 pages, 4 figure
Light mixed sneutrinos as thermal dark matter
In supersymmetric models with Dirac neutrino masses, a left-right mixed
sneutrino can be a viable dark matter candidate. We examine the
MSSM+ parameter space where this is the case with particular
emphasis on light sneutrinos with masses below 10 GeV. We discuss implications
for direct and indirect dark matter searches, including the relevant
uncertainties, as well as consequences for collider phenomenology.Comment: 33 pages, 14 figures; one figure and references adde
Structure and magnetism of Fe thin films grown on Rh(001) studied by photoelectron spectroscopy
application/pdf学術論文 (Article)378615 bytesjournal articl
Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator
Spin-polarized band structure of the three-dimensional quantum spin Hall
insulator (x=0.12-0.13) was fully elucidated by
spin-polarized angle-resolved photoemission spectroscopy using a high-yield
spin polarimeter equipped with a high-resolution electron spectrometer. Between
the two time-reversal-invariant points, and , of the
(111) surface Brillouin zone, a spin-up band ( band) was found to
cross the Fermi energy only once, providing unambiguous evidence for the strong
topological insulator phase. The observed spin-polarized band dispersions
determine the "mirror chirality" to be -1, which agrees with the theoretical
prediction based on first-principles calculations
Twisted Split Fermions
The observed flavor structure of the standard model arises naturally in
"split fermion" models which localize fermions at different places in an extra
dimension. It has, until now, been assumed that the bulk masses for such
fermions can be chosen to be flavor diagonal simultaneously at every point in
the extra dimension, with all the flavor violation coming from the Yukawa
couplings to the Higgs. We consider the more natural possibility in which the
bulk masses cannot be simultaneously diagonalized, that is, that they are
twisted in flavor space. We show that, in general, this does not disturb the
natural generation of hierarchies in the flavor parameters. Moreover, it is
conceivable that all the flavor mixing and CP-violation in the standard model
may come only from twisting, with the five-dimensional Yukawa couplings taken
to be universal.Comment: 15 pages, 1 figur
Spin-polarized surface state of MnSb(0001)
Knowledge of the spin-dependent electronic structure at surfaces and interfaces plays an increasingly important role when assessing possible use of novel magnetic materials for spintronic applications. It is shown that spin- and angle-resolved photoelectron spectroscopy together with ab initio electronic structure methods provides a full characterization of the surface electronic structure of ferromagnetic MnSb(0 0 0 1). Two different surface reconstructions have been compared in spin- and angle-resolved valence-band photoemission. For annealing at elevated temperatures, the ( 1 x 1)-structure transforms into 2 x 2 and a majority-spin peak appears at - 1.7 eV inside a majority-spin bulk band gap at the surface Brillouin zone centre. Its sensitivity to oxygen supports an interpretation as magnetic compound surface state. Local spin density calculations predict at the same energy (- 1.75 eV) a prominent d(z)2 surface state of majority spin for ( 1 x 1)- Mn terminated MnSb(0 0 0 1) but no such feature for ( 1 x 1)-Sb termination. The calculation shows that neither the bulk nor the surface is half-metallic, in agreement with the expectation for the hexagonal NiAs structure
Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel
We measure the band structure of nickel along various high-symmetry lines of
the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The
Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters
are obtained from non-magnetic density-functional theory resolves most of the
long-standing discrepancies between experiment and theory on nickel. Thereby we
support the view of itinerant ferromagnetism as induced by atomic correlations.Comment: 4 page REVTeX 4.0, one figure, one tabl
Electronic structure investigation of CeB6 by means of soft X-ray scattering
The electronic structure of the heavy fermion compound CeB6 is probed by
resonant inelastic soft X-ray scattering using photon energies across the Ce 3d
and 4d absorption edges. The hybridization between the localized 4f orbitals
and the delocalized valence-band states is studied by identifying the different
spectral contributions from inelastic Raman scattering and normal fluorescence.
Pronounced energy-loss structures are observed below the elastic peak at both
the 3d and 4d thresholds. The origin and character of the inelastic scattering
structures are discussed in terms of charge-transfer excitations in connection
to the dipole allowed transitions with 4f character. Calculations within the
single impurity Anderson model with full multiplet effects are found to yield
consistent spectral functions to the experimental data.Comment: 9 pages, 4 figures, 1 table,
http://link.aps.org/doi/10.1103/PhysRevB.63.07510
- …