837 research outputs found

    Strength of Mechanical Memories is Maximal at the Yield Point of a Soft Glass

    Full text link
    We show experimentally that both single and multiple mechanical memories can be encoded in an amorphous bubble raft, a prototypical soft glass, subject to an oscillatory strain. In line with recent numerical results, we find that multiple memories can be formed sans external noise. By systematically investigating memory formation for a range of training strain amplitudes spanning yield, we find clear signatures of memory even beyond yielding. Most strikingly, the extent to which the system recollects memory is largest for training amplitudes near the yield strain and is a direct consequence of the spatial extent over which the system reorganizes during the encoding process. Our study further suggests that the evolution of force networks on training plays a decisive role in memory formation in jammed packings.Comment: 13 pages, 4 Figure

    Duality and phase diagram of one dimensional transport

    Get PDF
    The observation of duality by Mukherji and Mishra in one dimensional transport problems has been used to develop a general approach to classify and characterize the steady state phase diagrams. The phase diagrams are determined by the zeros of a set of coarse-grained functions without the need of detailed knowledge of microscopic dynamics. In the process, a new class of nonequilibrium multicritical points has been identified.Comment: 6 pages, 2 figures (4 eps files

    Nonequilibrium tricriticality in one dimension

    Full text link
    We show the existence of a nonequilibrium tricritical point induced by a repulsive interaction in one dimensional asymmetric exclusion process. The tricritical point is associated with the particle-hole symmetry breaking introduced by the repulsion. The phase diagram and the crossover in the neighbourhood of the tricritical point for the shock formation at one of the boundaries are determined.Comment: 6 pages; 4 figure

    Nonlocality in kinetic roughening

    Get PDF
    We propose a phenomenological equation to describe kinetic roughening of a growing surface in presence of long range interactions. The roughness of the evolving surface depends on the long range feature, and several distinct scenarios of phase transitions are possible. Experimental implications are discussed.Comment: Replaced with the published version (Phys. Rev. Lett 79, 2502 (1997)). Eq. 1 written in a symmetrical form, references update

    Scaling of fluctuation for Directed polymers with random interaction

    Get PDF
    Using a finite size scaling form for reunion probability, we show numerically the existence of a binding-unbinding transition for Directed polymers with random interaction. The cases studied are (A1) two chains in 1+1 dimensions, (A2) two chains in 2+1 dimensions and (B) three chains in 1+1 dimensions. A similar finite size scaling form for fluctuation establishes a disorder induced transition with identical exponents for cases A2 and B. The length scale exponents in all the three cases are in agreement with previous exact renormalization group results.Comment: Revtex, 4 postscript figures available on request (email: [email protected]); To appear in J. Phys. A Letter

    A dynamically extending exclusion process

    Full text link
    An extension of the totally asymmetric exclusion process, which incorporates a dynamically extending lattice is explored. Although originally inspired as a model for filamentous fungal growth, here the dynamically extending exclusion process (DEEP) is studied in its own right, as a nontrivial addition to the class of nonequilibrium exclusion process models. Here we discuss various mean-field approximation schemes and elucidate the steady state behaviour of the model and its associated phase diagram. Of particular note is that the dynamics of the extending lattice leads to a new region in the phase diagram in which a shock discontinuity in the density travels forward with a velocity that is lower than the velocity of the tip of the lattice. Thus in this region the shock recedes from both boundaries.Comment: 20 pages, 12 figure

    Bose Condensation and the BTZ Black Hole

    Full text link
    Although all popular approaches to quantum gravity are able to recover the Bekenstein-Hawking entropy-area law in the thermodynamic limit, there are significant differences in their descriptions of the microstates and in the application of statistics. Therefore they can have significantly different phenomenological implications. For example, requiring indistinguishability of the elementary degrees of freedom should lead to changes in the black hole's radiative porperties away from the thermodynamic limit and at low temperatures. We demonstrate this for the Ba\~nados-Teitelboim-Zanelli (BTZ) black hole. The energy eigenstates and statistical entropy in the thermodynamic limit of the BTZ black hole were obtained earlier by us via symmetry reduced canonical quantum gravity. In that model the BTZ black hole behaves as a system of Bosonic mass shells moving in a one dimensional harmonic trap. Bose condensation does not occur in the thermodynamic limit but this system possesses a finite critical temperature, TcT_c, and exhibits a large condensate fraction below TcT_c when the number of shells is finite.Comment: 5 pages, 5 figures. Published versio

    Cosmological solutions, p-branes and the Wheeler-DeWitt equation

    Get PDF
    The low energy effective actions which arise from string theory or M-theory are considered in the cosmological context, where the graviton, dilaton and antisymmetric tensor field strengths depend only on time. We show that previous results can be extended to include cosmological solutions that are related to the E_N Toda equations. The solutions of the Wheeler-DeWitt equation in minisuperspace are obtained for some of the simpler cosmological models by introducing intertwining operators that generate canonical transformations which map the theories into free theories. We study the cosmological properties of these solutions, and also briefly discuss generalised Brans-Dicke models in our framework. The cosmological models are closely related to p-brane solitons, which we discuss in the context of the E_N Toda equations. We give the explicit solutions for extremal multi-charge (D-3)-branes in the truncated system described by the D_4 =O(4,4) Toda equations.Comment: 11 pages (2-column), Revte

    Phase transitions and noise crosscorrelations in a model of directed polymers in a disordered medium

    Full text link
    We show that effective interactions mediated by disorder between two directed polymers can be modelled as the crosscorrelation of noises in the Kardar-Parisi-Zhang (KPZ) equations satisfied by the respective free energies of these polymers. When there are two polymers, disorder introduces attractive interactions between them. We analyze the phase diagram in details and show that these interactions lead to new phases in the phase diagram. We show that, even in dimension d=1d=1, the two directed polymers see the attraction only if the strength of the disorder potential exceeds a threshold value. We extend our calculations to show that if there are mm polymers in the system then mm-body interactions are generated in the disorder averaged effective free energy.Comment: To appear in Phys. Rev. E(2000

    Scaling limit of vicious walks and two-matrix model

    Full text link
    We consider the diffusion scaling limit of the one-dimensional vicious walker model of Fisher and derive a system of nonintersecting Brownian motions. The spatial distribution of NN particles is studied and it is described by use of the probability density function of eigenvalues of N×NN \times N Gaussian random matrices. The particle distribution depends on the ratio of the observation time tt and the time interval TT in which the nonintersecting condition is imposed. As t/Tt/T is going on from 0 to 1, there occurs a transition of distribution, which is identified with the transition observed in the two-matrix model of Pandey and Mehta. Despite of the absence of matrix structure in the original vicious walker model, in the diffusion scaling limit, accumulation of contact repulsive interactions realizes the correlated distribution of eigenvalues in the multimatrix model as the particle distribution.Comment: REVTeX4, 12 pages, no figure, minor corrections made for publicatio
    corecore