11 research outputs found

    Calculation of the flow of a polydispersed system of particles

    No full text

    Composite Films of HDPE with SiO2 and ZrO2 Nanoparticles: The Structure and Interfacial Effects

    No full text
    Herein, we investigated the influence of two types of nanoparticle fillers, i.e., amorphous SiO2 and crystalline ZrO2, on the structural properties of their nanocomposites with high-density polyethylene (HDPE). The composite films were prepared by melt-blending with a filler content that varied from 1% to 20% v/v. The composites were characterized by small- and wide-angle x-ray scattering (SAXS and WAXS), small-angle neutron scattering (SANS), Raman spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). For both fillers, the nanoaggregates were evenly distributed in the polymer matrix and their initial state in the powders determined their surface roughness and fractal character. In the case of the nano-ZrO2 filler, the lamellar thickness and crystallinity degree remain unchanged over a broad range of filler concentrations. SANS and SEM investigation showed poor interfacial adhesion and the presence of voids in the interfacial region. Temperature-programmed SANS investigations showed that at elevated temperatures, these voids become filled due to the flipping motions of polymer chains. The effect was accompanied by a partial aggregation of the filler. For nano-SiO2 filler, the lamellar thickness and the degree of crystallinity increased with increasing the filler loading. SAXS measurements show that the ordering of the lamellae is disrupted even at a filler content of only a few percent. SEM images confirmed good interfacial adhesion and integrity of the SiO2/HDPE composite. This markedly different impact of both fillers on the composite structure is discussed in terms of nanoparticle surface properties and their affinity to the HDPE matrix

    Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS (COMPASS++/AMBER)

    No full text
    A New QCD facility at the M2 beam line of the CERN SPS COMPASS++/AMBE

    A New QCD facility at the M2 beam line of the CERN SPS: COMPASS++/AMBER

    No full text
    In this Letter of Intent, we propose a broad experimental programme for the ``New QCD facility at the M2 beam line of the CERN SPS''. This unrivalled installation will provide the site for a great variety of measurements to address fundamental issues of Quantum Chromodynamics, which are expected to lead to significant improvements in the understanding of QCD as our present theory of strong interactions. The proposed measurements cover the range from lowest-Q2Q^2 physics as the determination of the proton radius by elastic muon-proton scattering, over average-Q2Q^2-reactions to study hadron spectroscopy, to high-Q2Q^2 hadron-structure investigations using the Drell-Yan process and Deeply Virtual Compton Scattering
    corecore