70 research outputs found

    3-200 keV spectral states and variability of the INTEGRAL Black Hole binary IGR J17464-3213

    Full text link
    On March 2003, IBIS, the gamma-ray imager on board the INTEGRAL satellite, detected an outburst from a new source, IGR J17464-3213, that turned out to be a HEAO-1 transient, H1743-322. In this paper we report on the high energy behaviour of this BHC studied with the three main instruments onboard INTEGRAL. The data, collected with unprecedented sensitivity in the hard X-Ray range, show a quite hard Comptonised emission from 3 keV up to 150 keV during the rising part of the source outburst, with no thermal emission detectable. A few days later, a prominent soft disk multicolour component appears, with the hard tail luminosity almost unchanged: 10-9 erg*cm-2*s-1. Two months later, during a second monitoring campaign near the end of the outburst, the observed disk component was unchanged. Conversely, the Comptonised emission from the central-hot part of the disk reduced by a factor of 10. We present here its long term behaviour in different energy ranges and the combined JEM-X, SPI and IBIS wide band spectral evolution of this source.Comment: 12 pages, 4 figures, accepted for pubblication in AP

    Hard X-ray emission of the microquasar GX 339-4 in the low/hard state

    Get PDF
    We present the analysis of the high-energy emission of the Galactic black hole binary GX 339-4 in a low/hard state at the beginning of its 2004 outburst. The data from 273 ks of INTEGRAL observations, spread over 4 weeks, are analyzed, along with the existing simultaneous RXTE HEXTE and PCA data. During this period, the flux increases by a factor of ~=3, while the spectral shape is quite unchanged, at least up to 150 keV. The high-energy data allow us to detect the presence of a high-energy cutoff, generally related to thermal mechanisms, and to estimate the plasma parameters in the framework of the Comptonization models. We found an electron temperature of 60-70 keV and an optical depth of around 2.5, with a rather low reflection factor (0.2-0.4). In the last observation, we detected a high-energy excess above 200 keV with respect to thermal Comptonization, while at lower energies the spectrum is practically identical to the previous one taken just 2 days before. This suggests that the low- and high-energy components have a different origin

    Hard X-ray emission of the microquasar GRO J1655-40 during the rise of its 2005 outburst

    Get PDF
    We present the analysis of the high energy emission of the Galactic black hole GRO J1655-40 at the beginning of its 2005 outburst. The data from 458 ks of INTEGRAL observations, spread over 4 weeks, are analyzed, along with the existing simultaneous RXTE and Swift data. The high energy data allow us to detect the presence of a high energy cut-off and to study its evolution during the outburst rise. This high energy feature is generally related to thermal mechanisms in the framework of Comptonization models from which we can estimate the plasma parameters. We found an electron temperature of about 30-40 keV and an optical depth around 1.8-2.1. The high energy cut-off decreased along with the radio flux, and disappeared as the jet turned off.Comment: 24 pages, 5 figures, accepted for publication in the Astrophsical Journa

    Studies of release properties of ISOLDE targets

    Get PDF
    Off-line release rates of Be, Mg, S, Mn and Kr from refractory materials were studied. Mn yields were determined from a ZrO2 target and Kr yields from a SrO and ZrO2 targets. A Monte Carlo code to optimize ISOLDE targets was introduced

    State transition and flaring activity of IGR J17464-3213/H1743-322 with SPI/INTEGRAL telescope

    Full text link
    IGR J17464-3213, already known as the HEAO-1 transient source H1743-322, has been detected during a state transition by the SPI/INTEGRAL telescope. We describe the spectral evolution and flaring activity of IGR J17464-3213/H1743-322 from 2003 March 21 to 2003 April 22. During the first part, the source followed a continuous spectral softening, with the peak of the spectral energy distribution shifting from 100 keV down to a few keV. However the thermal disk and the hard X-ray components had a similar intensity, indicating that the source was in an intermediate state throughout our observations and evolving toward the soft state. In the second part of our observations, the ASM/RXTE and SPI/INTEGRAL light curve showed a strong flaring activity. Two flare events lasting about 1 day each have been detected with SPI and are probably due to instabilities in the accretion disk associated with the state transition. During these flares, the low (1.5-12 keV) and high (20-200 keV) energy fluxes monitored with ASM/RXTE and SPI/INTEGRAL, are correlated and the spectral shape (above 20 keV) remains unchanged while the luminosity increases by a factor greater than 2.Comment: 26 pages, 7 figures, accepted for publication in Astrophysical Journa

    Monte Carlo simulations of global Compton cooling in inner regions of hot accretion flows

    Full text link
    Hot accretion flows such as advection-dominated accretion flows are generally optically thin in the radial direction. Thus photons generated at some radii can cool or heat electrons at other radii via Compton scattering. Such global Compton scattering has previously been shown to be important for the dynamics of accretion flows. Here, we extend previous treatments of this problem by using accurate global general relativistic Monte Carlo simulations. We focus on an inner region of the accretion flow (R < 600R_g), for which we obtain a global self-consistent solution. As compared to the initial, not self-consistent solution, the final solution has both the cooling rate and the electron temperature significantly reduced at radii >=10 gravitational radii. On the other hand, the radiation spectrum of the self-consistent solution has the shape similar to that of the initial iteration, except for the high-energy cut-off being at an energy lower by a factor of ~2 and the bolometric luminosity decreased by a factor of ~2. We also compare the global Compton scattering model with local models in spherical and slab geometry. We find that the slab model approximates the global model significantly better than the spherical one. Still, neither local model gives a good approximation to the radial profile of the cooling rate, and the differences can be up to two orders of magnitude. The local slab model underestimates the cooling rate at outer regions whereas it overestimates that rate at inner regions. We compare our modelling results to observed hard-state spectra of black-hole binaries and find an overall good agreement provided any disc outflow is weak. We find that general-relativistic effects in flows which dynamics is modified by global Comptonization is crucial in approaching this agreement.Comment: 9 pages, 4 figures. Accepted to MNRAS. Add a new section to discuss on the impact of outflow and viscous electron heatin

    Correlated optical, X-ray, and $-ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2015 ESO.After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest to understand the accretion-ejection connections. These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from 2015 June 20th, 15:50 UTC to June 25th, 4:05 UTC, from the optical V-band, up to the soft γ-rays. V404 Cyg was extremely variable in all bands, with the detection of 18 flares with fluxes exceeding 6 Crab (20--40 keV) within 3 days. The flare recurrence can be as short as ∼ 20~min from peak to peak. A model-independent analysis shows that the >6 Crab flares have a hard spectrum. A simple 10--400 keV spectral analysis of the off-flare and flare periods shows that the variation in intensity is likely to be due to variations of a cut-off power law component only. The optical flares seem to be at least of two different types: one occurring in simultaneity with the X-ray flares, the other showing a delay greater than 10 min. The former could be associated with X-ray reprocessing by either an accretion disk or the companion star. We suggest that the latter are associated with plasma ejections that have also been seen in radio.Peer reviewe

    The infrared/X-ray correlation of GX 339-4: Probing hard X-ray emission in accreting black holes

    Get PDF
    GX 339-4 has been one of the key sources for unravelling the accretion ejection coupling in accreting stellar mass black holes. After a long period of quiescence between 1999 and 2002, GX 339-4 underwent a series of 4 outbursts that have been intensively observed by many ground based observatories [radio, infrared(IR), optical] and satellites (X-rays). Here, we present results of these broad-band observational campaigns, focusing on the optical-IR (OIR)/X-ray flux correlations over the four outbursts. We found tight OIR/X-ray correlations over four decades with the presence of a break in the IR/X-ray correlation in the hard state. This correlation is the same for all four outbursts. This can be interpreted in a consistent way by considering a synchrotron self-Compton origin of the X-rays in which the break frequency varies between the optically thick and thin regime of the jet spectrum. We also highlight the similarities and differences between optical/X-ray and IR/X-ray correlations which suggest a jet origin of the near-IR emission in the hard state while the optical is more likely dominated by the blackbody emission of the accretion disc in both hard and soft state. However we find a non negligible contribution of 40 per cent of the jet emission in the V-band during the hard state. We finally concentrate on a soft-to-hard state transition during the decay of the 2004 outburst by comparing the radio, IR, optical and hard X-rays light curves. It appears that unusual delays between the peak of emission in the different energy domains may provide some important constraints on jet formation scenario.Comment: Accepted for publication in MNRAS, 12 pages, 8 figure

    The INTEGRAL Galactic bulge monitoring program: the first 1.5 years

    Full text link
    The Galactic bulge region is a rich host of variable high-energy point sources. Since 2005, February 17 we are monitoring the source activity in this region about every three days with INTEGRAL. Thanks to the large field of view, the imaging capabilities and the sensitivity at hard X-rays, we are able to present for the first time a detailed homogeneous (hard) X-ray view of a sample of 76 sources in the Galactic bulge region. We describe the successful monitoring program and show the first results for a period of about one and a half year. We focus on the short (hour), medium (month) and long-term (year) variability in the 20-60 keV and 60-150 keV bands. When available, we discuss the simultaneous observations in the 3-10 keV and 10-25 keV bands. Per visibility season we detect 32/33 sources in the 20-60 keV band and 8/9 sources in the 60-150 keV band. On average, we find per visibility season one active bright (>~100 mCrab, 20-60 keV) black-hole candidate X-ray transient and three active weaker (<~25 mCrab, 20-60 keV) neutron star X-ray transients. Most of the time a clear anti-correlation can be seen between the soft and hard X-ray emission in some of the X-ray bursters. Hard X-ray flares or outbursts in X-ray bursters, which have a duration of the order of weeks, are accompanied by soft X-ray drops. On the other hand, hard X-ray drops can be accompanied by soft X-ray flares/outbursts. We found a number of new sources, IGR J17354-3255, IGR 17453-2853, IGR J17454-2703, IGR J17456-2901b, IGR J17536-2339, and IGR J17541-2252. We report here on some of the high-energy properties of these sources. The high-energy light curves of all the sources in the field of view, and the high-energy images of the region, are made available through the WWW at http://isdc.unige.ch/Science/BULGE/.Comment: 27 pages, 42 figures, accepted for publication in A&A. Abstract abridged. Tables 3,4,6,7 appear at the end. Images have been compressed and are reduced in quality; original PostScript images can be retrieved from http://isdc.unige.ch/~kuulkers/bulge
    corecore