151 research outputs found

    Protonation Isomers of Highly Charged Protein Ions Can Be Separated in FAIMS-MS

    Full text link
    High-field asymmetric waveform ion mobility spectrometry-mass spectrometry (FAIMS-MS) can resolve over an order of magnitude more conformers for a given protein ion than alternative methods. Such an expansion in separation space results, in part, from protein ions with masses of \u3e29 kDa undergoing dipole alignment in the high electric field of FAIMS, and the resolution of ions that adopt pendular vs free rotor states. In this study, FAIMS-MS, collision-induced dissociation (CID), and travelling wave (TW) IMS-MS were used to investigate the pendular and free rotor states of protonated carbonic anhydrase II (CAII, 29 kDa). The electrospray ionization additive 1,2-butylene carbonate was used to increase protein charge states and ensure extended ion conformations were formed. For relatively high charge states in which dipole alignment occurs (30e38þ), FAIMS-MS can baseline resolve the isobaric pendular and free rotor ion populations. For TWIMS-MS, these same charge states resulted in monomodal arrival time distributions with collision cross sections corresponding to highly extended ion conformations. Interestingly, CID of FAIMS-selected pendular and free rotor ion populations resulted in significantly different frag-mentation patterns. For example, CID of the dipole aligned CAII 37þ resulted in cleavages C-terminal to residue 183, 192 and 196, whereas cleavage sites for the free rotor population occurred near residues 12 and 238. Given that the cleavage sites are ’directed’ by protonation sites in the CID of protein ions, and highly charged protein ions adopt extended conformations with the same or very similar collision cross sections, these results indicate that the pendular and free rotor populations separated in FAIMS can be attributed to protonation isomers. Moreover, the extent of protein ion charging in FAIMS-MS decreased substantially as the carrier gas flow rate decreased, indicating that ion charging in FAIMS-MS can be limited by proton-transfer reactions. Given that the total mass of proton charge carriers corresponds to less than 0.2% the mass of CAII, we anticipate that FAIMS-MS can be used to separate intact isobaric proteoforms with masses of at least ~29 kDa that result from alternative sites of post-translational modifications

    Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183

    Get PDF
    Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission

    Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183.

    Get PDF
    Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a \u3e 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission

    Calcineurin Inhibition at the Clinical Phase of Prion Disease Reduces Neurodegeneration, Improves Behavioral Alterations and Increases Animal Survival

    Get PDF
    Prion diseases are fatal neurodegenerative disorders characterized by a long pre-symptomatic phase followed by rapid and progressive clinical phase. Although rare in humans, the unconventional infectious nature of the disease raises the potential for an epidemic. Unfortunately, no treatment is currently available. The hallmark event in prion diseases is the accumulation of a misfolded and infectious form of the prion protein (PrPSc). Previous reports have shown that PrPSc induces endoplasmic reticulum stress and changes in calcium homeostasis in the brain of affected individuals. In this study we show that the calcium-dependent phosphatase Calcineurin (CaN) is hyperactivated both in vitro and in vivo as a result of PrPSc formation. CaN activation mediates prion-induced neurodegeneration, suggesting that inhibition of this phosphatase could be a target for therapy. To test this hypothesis, prion infected wild type mice were treated intra-peritoneally with the CaN inhibitor FK506 at the clinical phase of the disease. Treated animals exhibited reduced severity of the clinical abnormalities and increased survival time compared to vehicle treated controls. Treatment also led to a significant increase in the brain levels of the CaN downstream targets pCREB and pBAD, which paralleled the decrease of CaN activity. Importantly, we observed a lower degree of neurodegeneration in animals treated with the drug as revealed by a higher number of neurons and a lower quantity of degenerating nerve cells. These changes were not dependent on PrPSc formation, since the protein accumulated in the brain to the same levels as in the untreated mice. Our findings contribute to an understanding of the mechanism of neurodegeneration in prion diseases and more importantly may provide a novel strategy for therapy that is beneficial at the clinical phase of the disease

    Genetic Variants of APOL1 Are Major Determinants of Kidney Failure in People of African Ancestry With HIV

    Get PDF
    INTRODUCTION: Variants of the APOL1 gene are associated with chronic kidney disease (CKD) in people of African ancestry, although evidence for their impact in people with HIV are sparse. METHODS: We conducted a cross-sectional study investigating the association between APOL1 renal risk alleles and kidney disease in people of African ancestry with HIV in the UK. The primary outcome was end-stage kidney disease (ESKD; estimated glomerular filtration rate [eGFR] of 30 mg/mmol), and biopsy-proven HIV-associated nephropathy (HIVAN). Multivariable logistic regression was used to estimate the associations between APOL1 high-risk genotypes (G1/G1, G1/G2, G2/G2) and kidney disease outcomes. RESULTS: A total of 2864 participants (mean age 48.1 [SD 10.3], 57.3% female) were genotyped, of whom, 354 (12.4%) had APOL1 high-risk genotypes, and 99 (3.5%) had ESKD. After adjusting for demographic, HIV, and renal risk factors, individuals with APOL1 high-risk genotypes were at increased odds of ESKD (odds ratio [OR] 10.58, 95% CI 6.22–17.99), renal impairment (OR 5.50, 95% CI 3.81–7.95), albuminuria (OR 3.34, 95% CI 2.00–5.56), and HIVAN (OR 30.16, 95% CI 12.48–72.88). An estimated 49% of ESKD was attributable to APOL1 high-risk genotypes. CONCLUSION: APOL1 high-risk genotypes were strongly associated with kidney disease in people of African ancestry with HIV and accounted for approximately half of ESKD cases in this cohort

    Sickle Cell Trait and Kidney Disease in People of African Ancestry With HIV

    Get PDF
    Introduction: Sickle cell trait (SCT) has been associated with chronic kidney disease (CKD) in African Americans, although evidence for its impact in Africans and people with HIV is currently lacking. We conducted a cross-sectional study investigating the association between SCT and kidney disease in people of African ancestry with HIV in the UK. Methods: The primary outcome was estimated glomerular filtration rate (eGFR) 50 mg/mmol), and albuminuria (albumin-to-creatinine ratio >3 mg/mmol). Multivariable logistic regression was used to estimate the associations between SCT and kidney disease outcomes. Results: A total of 2895 participants (mean age 48.1 [SD 10.3], 57.2% female) were included, of whom 335 (11.6%) had SCT and 352 (12.2%) had eGFR <60 ml/min per 1.73 m2. After adjusting for demographic, HIV, and kidney risk factors including APOL1 high-risk genotype status, individuals with SCT were more likely to have eGFR <60 ml/min per 1.73 m2 (odds ratio 1.62 [95% CI 1.14–2.32]), eGFR <90 ml/min per 1.73 m2 (1.50 [1.14–1.97]), and albuminuria (1.50 [1.09–2.05]). Stratified by APOL1 status, significant associations between SCT and GFR <60 ml/min per 1.73 m2, eGFR <90 ml/min per 1.73 m2, proteinuria, and albuminuria were observed for those with APOL1 low-risk genotypes. Conclusion: Our results extend previously reported associations between SCT and kidney disease to people with HIV. In people of African ancestry with HIV, these associations were largely restricted to those with APOL1 low-risk genotypes

    Continuous Quinacrine Treatment Results in the Formation of Drug-Resistant Prions

    Get PDF
    Quinacrine is a potent antiprion compound in cell culture models of prion disease but has failed to show efficacy in animal bioassays and human clinical trials. Previous studies demonstrated that quinacrine inefficiently penetrates the blood-brain barrier (BBB), which could contribute to its lack of efficacy in vivo. As quinacrine is known to be a substrate for P-glycoprotein multi-drug resistance (MDR) transporters, we circumvented its poor BBB permeability by utilizing MDR0/0 mice that are deficient in mdr1a and mdr1b genes. Mice treated with 40 mg/kg/day of quinacrine accumulated up to 100 µM of quinacrine in their brains without acute toxicity. PrPSc levels in the brains of prion-inoculated MDR0/0 mice diminished upon the initiation of quinacrine treatment. However, this reduction was transient and PrPSc levels recovered despite the continuous administration of quinacrine. Treatment with quinacrine did not prolong the survival times of prion-inoculated, wild-type or MDR0/0 mice compared to untreated mice. A similar phenomenon was observed in cultured differentiated prion-infected neuroblastoma cells: PrPSc levels initially decreased after quinacrine treatment then rapidly recovered after 3 d of continuous treatment. Biochemical characterization of PrPSc that persisted in the brains of quinacrine-treated mice had a lower conformational stability and different immunoaffinities compared to that found in the brains of untreated controls. These physical properties were not maintained upon passage in MDR0/0 mice. From these data, we propose that quinacrine eliminates a specific subset of PrPSc conformers, resulting in the survival of drug-resistant prion conformations. Transient accumulation of this drug-resistant prion population provides a possible explanation for the lack of in vivo efficacy of quinacrine and other antiprion drugs

    N-terminal Domain of Prion Protein Directs Its Oligomeric Association

    Get PDF
    The self-association of prion protein (PrP) is a critical step in the pathology of prion diseases. It is increasingly recognized that small non-fibrillar ?-sheet-rich oligomers of PrP may be of crucial importance in the prion disease process. Here, we characterize the structure of a well defined ?-sheet-rich oligomer, containing ?12 PrP molecules, and often enclosing a central cavity, formed using full-length recombinant PrP. The N-terminal region of prion protein (residues 23-90) is required for the formation of this distinct oligomer; a truncated form comprising residues 91-231 forms a broad distribution of aggregated species. No infectivity or toxicity was found using cell and animal model systems. This study demonstrates that examination of the full repertoire of conformers and assembly states that can be accessed by PrP under specific experimental conditions should ideally be done using the full-length protein
    corecore