751 research outputs found

    Tectonic deformation of the Andes and the configuration of the subducted slab in central Peru: Results from a micro-seismic experiment

    Get PDF
    The vast majority of the microearthquakes recorded occurred to the east: on the Huaytapallana fault in the Eastern Cordillera or in the western margin of the sub-Andes. The sub-Andes appear to be the physiographic province subjected to the most intense seismic deformation. Focal depths for the crustal events here are as deep as 50 km, and the fault plane solutions, show thrust faulting on steep planes oriented roughly north-south. The Huaytapallana fault in the Cordillera Oriental also shows relatively high seismicity along a northeast-southwest trend that agrees with the fault scarp and the east dipping nodal plane of two large earthquakes that occurred on this fault in 1969. The recorded microearthquakes of intermediate depth show a flat seismic zone about 25 km thick at a depth of about 100 km. This agrees with the suggestion that beneath Peru the slab first dips at an angle of 30 deg to a depth of 100 km and then flattens following a quasi-horizontal trajectory. Fault plane solutions of intermediate depth microearthquakes have horizontal T axes oriented east-west

    Effect of oxygen plasma etching on graphene studied with Raman spectroscopy and electronic transport

    Get PDF
    We report a study of graphene and graphene field effect devices after exposure to a series of short pulses of oxygen plasma. We present data from Raman spectroscopy, back-gated field-effect and magneto-transport measurements. The intensity ratio between Raman "D" and "G" peaks, I(D)/I(G) (commonly used to characterize disorder in graphene) is observed to increase approximately linearly with the number (N(e)) of plasma etching pulses initially, but then decreases at higher Ne. We also discuss implications of our data for extracting graphene crystalline domain sizes from I(D)/I(G). At the highest Ne measured, the "2D" peak is found to be nearly suppressed while the "D" peak is still prominent. Electronic transport measurements in plasma-etched graphene show an up-shifting of the Dirac point, indicating hole doping. We also characterize mobility, quantum Hall states, weak localization and various scattering lengths in a moderately etched sample. Our findings are valuable for understanding the effects of plasma etching on graphene and the physics of disordered graphene through artificially generated defects.Comment: 10 pages, 5 figure

    The configuration of the seismic zone and the downgoing slab in southern Peru

    Get PDF
    Using data from temporary networks of portable seismographs in southern Peru, we located 888 shallow and intermediate depth events near a proposed discontinuity in the seismic zone there. These events reveal a prominent contortion, instead of a discontinuity, that trends approximately N80°E, parallel to the direction of relative plate motion. North of about 15°S, the seismic zone beneath Peru is nearly horizontal, but south of about 15.5°S, it dips at about 25°. Volcanoes lie above the more steeply dipping zone where earthquakes occur between 120 and 140 km, and the volcanic line in southern Peru stops abruptly at the contortion

    Tomographic image of melt storage beneath Askja Volcano, Iceland using local microseismicity

    No full text
    We use P wave and S wave arrivals from microseismic earthquakes to construct 3-D tomographic Vp and Vs images of the magma storage region beneath Askja's central volcano in the Northern Volcanic Zone of Iceland. A distinctive ellipsoidal low-velocity anomaly, with both Vp and Vsvelocities 8-12% below the background, is imaged at 6-11 km depth beneath the caldera. The presence of a shallow magma chamber is corroborated by geodetic and gravity studies. The small Vp/Vs anomaly suggests a lack of pervasive melt. We interpret this anomaly as a region of multiple sills, some frozen but hot, others containing partial melt. A second, smaller low-velocity anomaly beneath the main magma storage region may represent a magma migration pathway. This interpretation is supported by the close proximity to the anomaly of clusters of deep, magmatically induced earthquakes. However, the location and shape of this deep anomaly are poorly constrained by the current data set

    Facade Integration of Solar Thermal Collectors:A Breakthrough?

    Get PDF
    One main barrier to the acceptability of façade use of solar thermal collectors is their black appearance and the visibility of piping or absorber irregularities through the glazing. To facilitate façade integration, a project was set up to develop selective filters reflecting only a small part of the solar spectrum in the visible range while letting the rest of the radiation heat the absorber. These filters were successfully produced and, combined with a diffusing glass treatment, have achieved the desired masking effect with minor impact on the collector efficiency (less than 10%). Glasses of various colours combined with several diffusing finishing (acid etching, structured glass etc…) can be produced that are able to hide the absorber. Such glazings will allow the use of the same product both in front of façade areas equipped with solar absorbers (as collector external glass) and in front of the non exposed areas (as façade cladding), opening the way to a broad variety of active façade designs. The active elements can then be positioned at will on the exposed areas, and their quantity determined only by thermal needs. By freeing the dimension of the façade area that can be clad with this glazing from the thermally needed surface for collectors, a major step to help architects use solar thermal on facades has been taken

    Sol-gel deposition of nanostructured low refractive index materials on solar collector glazing

    Get PDF
    Nanoporous SiO2 and nanocomposite MgF2:SiO2 coatings have been deposited by sol gel dip-coating in a particle-free atmosphere. The refractive index of the prepared nanostructured thin films is determined from spectrophotometric data. In both cases, significantly lower values than for compact SiO2 have been achieved. Highly transparent samples have been produced in a single dip-coating step followed by simple thermal annealing in air. Broad spectral transmittance maxima are observed exceeding values of 98.5% (nanoporous SiO2) and 99.5% (quaternary Mg:F:Si:O films). MgF2:SiO2 nanocomposite thin films can be expected to exhibit a higher aging stability than porous SiO2 films with respect to pore-filling by hydrocarbons and are therefore a promising alternative as well for single-layered anti reflection coatings as for multilayered coulored coatings on solar collector glazing

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio
    • …
    corecore