2,966 research outputs found
Hadron Helicity Violation in Exclusive Processes: Quantitative Calculations in Leading Order QCD
We study a new mechanism for hadronic helicity flip in high energy hard
exclusive reactions. The mechanism proceeds in the limit of perfect chiral
symmetry, namely without any need to flip a quark helicity. The fundamental
feature of the new mechanism is the breaking of rotational symmetry of the hard
collision by a scattering plane in processes involving independent quark
scattering. We show that in the impulse approximation there is no evidence for
of the helicity violating process as the energy or momentum transfer is
increased over the region 1 GeV^2 < Q^2 < 100 GeV^2. In the asymptotic region
Q^2> 1000 GeV^2, a saddle point approximation with doubly logarithmic accuracy
yields suppression by a fraction of power of Q^2. ``Chirally--odd" exclusive
wave functions which carry non--zero orbital angular momentum and yet are
leading order in the high energy limit, play an important role.Comment: uuencoded LaTeX file (21 pages) and PostScript figure
The Virgo Alignment Puzzle in Propagation of Radiation on Cosmological Scales
We reconsider analysis of data on the cosmic microwave background on the
largest angular scales. Temperature multipoles of any order factor naturally
into a direct product of axial quantities and cosets. Striking coincidences
exist among the axes associated with the dipole, quadrupole, and octupole CMB
moments. These axes also coincide well with two other axes independently
determined from polarizations at radio and optical frequencies propagating on
cosmological scales. The five coincident axes indicate physical correlation and
anisotropic properties of the cosmic medium not predicted by the conventional
Big Bang scenario. We consider various mechanisms, including foreground
corrections, as candidates for the observed correlations. We also consider
whether the propagation anomalies may be a signal of ``dark energy'' in the
form of a condensed background field. Perhaps {\it light propagation} will
prove to be an effective way to look for the effects of {\it dark energy}.Comment: 24 pages, 4 figures, minor changes, no change in result or
conclusions. to appear in IJMP
Magnetization screening from gluonic currents and scaling law violation in the ratio of magnetic form factors for neutron and proton
The ratio exhibits a decrease for four-momentum transfer
Q^2 increasing beyond 1 GeV^2 indicating different spatial distributions for
charge and for magnetization inside the proton. One-gluon exchange currents can
explain this behaviour. The SU(6) breaking induced by gluonic currents predicts
furthermore that the ratio of neutron to proton magnetic form factors
falls with increasing Q^2. We find that the
experimental data are consistent with our expectations of an almost linear
decrease of the ratio with increasing Q^2,
supporting the statement that the spatial distributions of magnetization are
different for protons and for neutrons.Comment: 10 pages, 3 figure
Decay of the Maxwell field on the Schwarzschild manifold
We study solutions of the decoupled Maxwell equations in the exterior region
of a Schwarzschild black hole. In stationary regions, where the Schwarzschild
coordinate ranges over , we obtain a decay rate of
for all components of the Maxwell field. We use vector field methods
and do not require a spherical harmonic decomposition.
In outgoing regions, where the Regge-Wheeler tortoise coordinate is large,
, we obtain decay for the null components with rates of
, , and . Along the event horizon and in ingoing regions, where ,
and when , all components (normalized with respect to an ingoing null
basis) decay at a rate of C \uout^{-1} with \uout=t+r_* in the exterior
region.Comment: 37 pages, 5 figure
Systematic Analysis Method for Color Transparency Experiments
We introduce a data analysis procedure for color transparency experiments
which is considerably less model dependent than the transparency ratio method.
The new method is based on fitting the shape of the A dependence of the nuclear
cross section at fixed momentum transfer to determine the effective attenuation
cross section for hadrons propagating through the nucleus. The procedure does
not require assumptions about the hard scattering rate inside the nuclear
medium. Instead, the hard scattering rate is deduced directly from the data.
The only theoretical input necessary is in modelling the attenuation due to the
nuclear medium, for which we use a simple exponential law. We apply this
procedure to the Brookhaven experiment of Carroll et al and find that it
clearly shows color transparency: the effective attenuation cross section in
events with momentum transfer is approximately $40\ mb\ (2.2\
GeV^2/Q^2)$. The fit to the data also supports the idea that the hard
scattering inside the nuclear medium is closer to perturbative QCD predictions
than is the scattering of isolated protons in free space. We also discuss the
application of our approach to electroproduction experiments.Comment: 11 pages, 11 figures (figures not included, available upon request),
report # KU-HEP-92-2
Locality of quark-hadron duality and deviations from quark counting rules above resonance region
We show how deviations from the dimensional scaling laws for exclusive
processes may be related to a breakdown in the locality of quark-hadron
duality. The essential principles are illustrated in a pedagogic model of a
composite system with two spinless charged constituents, for which a dual
picture for the low-energy resonance phenomena and high-energy scaling behavior
can be established. We introduce the concept of "restricted locality" of
quark-hadron duality and show how this results in deviations from the pQCD
quark counting rules above the resonance region. In particular it can be a
possible source for oscillations about the smooth quark counting rule, as seen
e.g. in the 90-degree differential cross sections for .Comment: The way to present Eqs. (2), (4), (7) are changed while physics
contents and calculations are left intact; Additional explanations for the
forward and large-angle duality are added; Three more references are
included; Version to appear on Phys. Rev. Let
Exclusive Hadronic Processes and Color Transparency
We review the current status of high energy exclusive processes and color
transparency.Comment: 17 pages, 8 figures, based on talk given at International Symposium
on Nuclear Physics, Mumbai, Dec 18-22, 200
Comparative study of radio pulses from simulated hadron-, electron-, and neutrino-initiated showers in ice in the GeV-PeV range
High energy particle showers produce coherent Cherenkov radio emission in
dense, radio-transparent media such as cold ice. Using PYTHIA and GEANT
simulation tools, we make a comparative study among electromagnetic (EM) and
hadronic showers initiated by single particles and neutrino showers initiated
by multiple particles produced at the neutrino-nucleon event vertex. We include
all the physics processes and do a complete 3-D simulation up to 100 TeV for
all showers and to 1 PeV for electron and neutrino induced showers. We
calculate the radio pulses for energies between 100 GeV and 1 PeV and find
hadron showers, and consequently neutrino showers, are not as efficient below 1
PeV at producing radio pulses as the electromagnetic showers. The agreement
improves as energy increases, however, and by a PeV and above the difference
disappears. By looking at the 3-D structure of the showers in time, we show
that the hadronic showers are not as compact as the EM showers and hence the
radiation is not as coherent as EM shower emission at the same frequency. We
show that the ratio of emitted pulse strength to shower tracklength is a
function only of a single, coherence parameter, independent of species and
energy of initiating particle.Comment: a few comments added, to bo published in PRD Nov. issue, 10 pages, 3
figures in tex file, 3 jpg figures in separate files, and 1 tabl
Recommended from our members
Tablet PCs in schools: Case study report: A report for Becta by the Open University
The publication provides an analysis of twelve case studies involving schools in England that were using Tablet PCs. The analysis is complemented by brief individual reports describing aspects of how each of these schools was using Tablet PCs
- …