15,905 research outputs found

    Collinear versus non-collinear magnetic order in Pd atomic clusters: ab-initio calculations

    Full text link
    We present a thorough theoretical assessment of the stability of non-collinear spin arrangements in small palladium clusters. We generally find that ferromagnetic order is always preferred, but that antiferromagnetic and non-collinear configurations of different sorts exist and compete for the first excited isomers. We also show that the ground state is insensitive to the choice of atomic configuration for the pseudopotential used and to the approximation taken for the exchange and correlation potential. Moreover, the existence and relative stability of the different excited configurations also depends weakly on the approximations employed. These results provide strong evidence on the transferability of pseudopotential and exchange and correlation functionals for palladium clusters as opposed to the situation found for the bulk phases of palladium.Comment: 5 pages, 4 figure

    Effects of Bose-Einstein Condensation on forces among bodies sitting in a boson heat bath

    Get PDF
    We explore the consequences of Bose-Einstein condensation on two-scalar-exchange mediated forces among bodies that sit in a boson gas. We find that below the condensation temperature the range of the forces becomes infinite while it is finite at temperatures above condensation.Comment: 10 pages, 2 figure

    Spontaneous CPT Violation in Confined QED

    Full text link
    Symmetry breaking induced by untwisted fermions in QED in a nonsimply connected spacetime with topology S1×R3S^{1}\times R^{3} is investigated. It is found that the discrete CPT symmetry of the theory is spontaneously broken by the appearance of a constant vacuum expectation value of the electromagnetic potential along the direction of space periodicity. The constant potential is shown to be gauge nonequivalent to zero in the nonsimply connected spacetime under consideration. Due to the symmetry breaking, one of the electromagnetic modes of propagation is massive with a mass that depends on the inverse of the compactification length. As a result, the system exhibits a sort of topological directional superconductivity.Comment: 6 pages, revte

    Structure and electronic properties of molybdenum monoatomic wires encapsulated in carbon nanotubes

    Get PDF
    Monoatomic chains of molybdenum encapsulated in single walled carbon nanotubes of different chiralities are investigated using density functional theory. We determine the optimal size of the carbon nanotube for encapsulating a single atomic wire, as well as the most stable atomic arrangement adopted by the wire. We also study the transport properties in the ballistic regime by computing the transmission coefficients and tracing them back to electronic conduction channels of the wire and the host. We predict that carbon nanotubes of appropriate radii encapsulating a Mo wire have metallic behavior, even if both the nanotube and the wire are insulators. Therefore, encapsulating Mo wires in CNT is a way to create conductive quasi one-dimensional hybrid nanostructures.Comment: 8 pages, 10 figure

    Impact of dimerization and stretching on the transport properties of molybdenum atomic wires

    Full text link
    We study the electrical and transport properties of monoatomic Mo wires with different structural characteristics. We consider first periodic wires with inter-atomic distances ranging between the dimerized wire to that formed by equidistant atoms. We find that the dimerized case has a gap in the electronic structure which makes it insulating, as opposed to the equidistant or near-equidistant cases which are metallic. We also simulate two conducting one-dimensional Mo electrodes separated by a scattering region which contains a number of dimers between 1 and 6. The IVI-V characteristics strongly depend on the number of dimers and vary from ohmic to tunneling, with the presence of different gaps. We also find that stretched chains are ferromagnetic.Comment: 8 pages, 7 figure

    Color Magnetic Flux Tubes in Dense QCD

    Full text link
    QCD is expected to be in the color-flavor locking phase in high baryon density, which exhibits color superconductivity. The most fundamental topological objects in the color superconductor are non-Abelian vortices which are topologically stable color magnetic flux tubes. We present numerical solutions of the color magnetic flux tube for diverse choices of the coupling constants. We also analytically study its asymptotic profiles and find that they are different from the case of usual superconductors. We propose the width of color magnetic fluxes and find that it is larger than naive expectation of the Compton wave length of the massive gluon when the gluon mass is larger than the scalar mass.Comment: 24 pages, 5 figures; v2: typos corrected, references added, minor changes; v3: published versio

    Exact Kohn-Sham eigenstates versus quasiparticles in simple models of strongly correlated electrons

    Get PDF
    We present analytic expressions for the exact density functional and Kohn-Sham Hamiltonian of simple tight-binding models of correlated electrons. These are the single- and double-site versions of the Anderson, Hubbard and spinless fermion models. The exact exchange and correlation potentials are fully non-local. The analytic expressions allow to compare the Kohn-Sham eigenstates of exact density functional theory with the many-body quasi-particle states of these correlated-electron systems. The exact Kohn-Sham spectrum describes correctly many of the non-trivial features of the many-body quasi-particle spectrum, as for example the precursors of the Kondo peak. However, we find that some pieces of the quasi-particle spectrum are missing because the many-body phase-space for electron and hole excitations is richer
    corecore