53 research outputs found

    Friction Unit of a Disc Brake Based on a Combination of Friction Materials

    Get PDF
    The design of the disc brake friction unit is proposed, the basis for the creation of which is a combination of friction materials with different properties. As a criterion for the structural formation of a friction unit of a disc brake, it is proposed to use the initial equality of linear wear rates for all brake linings made of friction materials with different properties. It is shown that the use of a friction unit based on combined friction materials makes it possible to achieve new disc brake characteristics, compared to its traditional design. It is concluded that the proposed solution is promising

    Pecularities of composition, structure and environments of Hirnantian deposits in the Timan-northern Ural sedimentary basin

    Get PDF
    The results of lithological and geochemical study of the Hirnantian deposits on the western slope of the Subpolar (Ko-BKB and Ko-108/01 sections) and Northern (BK-2 section) Urals are presented. At the beginning of the Hirnantian the regression in the Timan-northern Ural region on the outer zone of the carbonate platform margin (eastern sections of Ko-BKB - the Bad’yashor Fm in the Kozhym River, Subpolar Urals and BK-2 - pack 1 of the Verkh Ruchej Fm in the Ilych River basin, Northern Urals) was manifested in the formation of breccias, erosion surfaces with pockets, carbon and oxygen isotope excursions. In the inner zone of the platform margin (western section Ko-108/01 - pack 1 of the Yunkoshor Fm) was formed bioclastic sands, erosion processes have been significantly weaker. In the late Hirnantian existed shoals with crinoidal-sand facies (sections Ko-BKB - the Kamennaya Baba Fm and BK-2 - pack 2 of the Verkh Ruchej Fm) and more quiet water conditions of lower intertidal zone (section Ko-108/01 - pack 2 of the Yunkoshor Fm). The difference in the sedimentation was due to the existence of paleouplifts and paleodepressions (raised and lowered blocks of composite basement) on the carbonate platform. The similar environments in the sedimentary basin are revealed in the mid-Hirnantian by the negative excursion of carbon and oxide isotope curves clearly expressed in all sections. This shift reaching in the δ18О to 4.7‰ fixed in the section Ko-BKB. Such expressive isotope excursion can apply as the regional geochemical marker of the mid-Hirnantian deposits. This time interval characterizes an abrupt shallowing, intense continental runoff, and influence of fresh-water due to short-term extensive regional regression in the Timan-northern Ural marine basin. For the Hirnantian Stage in stratigraphic scheme of the Western Urals on the basis of sections completeness it is necessary to allocate the “Kozhym” Regional Stage with the stratotype sections in the Kozhym River on the Subpolar Urals, which must be located above the Kyr’ya Regional Stage corresponding to the upper Katian

    Пищевая ценность, качество сырья и продовольственное значение культуры гороха овощного (Pisum sativum L.)

    Get PDF
    Vegetable peas are by far the most widely used among the main vegetable legumes. Due to its high nutritional value, it has an important food value and is cultivated almost everywhere. High nutritional qualities of vegetable peas are determined by the content of protein, carbohydrates, dietary fiber, vitamins, as well as macro– and microelements. Pea protein is popular due to its affordable price compared to animal protein. The value of pea protein is determined by its amino acid composition and its high balance, especially valuable amino acids that are not synthesized in animals and humans.The article discusses the nutritional value of vegetable peas (green beans; fresh, frozen and canned vegetable peas; dry seeds); the content of water-soluble protein, amino acid composition, the content of macro- and microelements in the seeds of vegetable peas of FSBSI FSVC selection varieties; the quality of green peas as raw materials for canning, depending on the type of seeds and the structure of starch grains; requirements for the quality of raw vegetable peas for canning; seedlings and microgreens as useful and nutritious products for fresh consumption; medicinal properties of vegetable peas; varieties of vegetable peas for various uses.Горох овощной на сегодняшний день – наиболее широко используется среди основных овощных бобовых культур. Благодаря высокой пищевой ценности он имеет важное продовольственное значение и возделывается практически повсеместно. Высокие пищевые качества гороха овощного определяются содержанием белка, углеводов, пищевых волокон, витаминов, а также макро– и микроэлементов. Белок гороха популярен благодаря доступной цене по сравнению с белком животного происхождения. Ценность белка гороха определяет его аминокислотный состав и его высокая сбалансированность, особенно ценны аминокислоты, которые не синтезируются в организме животных и человека. В статье рассматривается пищевая ценность гороха овощного (зеленых бобов; свежего, замороженного и консервированного гороха овощного; сухих семян); содержание водорастворимого белка, аминокислотный состав, содержание макро- и микроэлементов в семенах гороха овощного сортов селекции ФГБНУ ФНЦО; качество свежего гороха овощного как сырья для консервирования в зависимости от типа семян и структуры крахмального зерна; требования к качеству сырья гороха овощного для консервирования; проростки и микрозелень как полезные и питательные продукты для свежего потребления; лечебные свойства гороха овощного; сорта гороха овощного для различного направления использования

    Особенности каротиноидного состава тыквы Конфетка, перспективы использования

    Get PDF
    Relevance. Pumpkin is one of the most important source of carotenoids for humans: β- and α-carotene, lutein and zeaxanthin playing a fundamental role in providing twilight and color vision accordingly.Results. Investigation of pumpkin carotenoid composition, Konfetka variety, revealed for the first time that this cultivar is the only one containing exclusively lutein in pulp with lutein and zeaxanthin in peel and lutein, zeaxanthin and β-carotene in placenta. Lutein concentration in pulp reached 11 mg/100 g, peel – 41.3/100 g, placenta – 51.2 mg/100 g. Zeaxanthin was absent in pulp and reached 28.3 mg/100 g in peel, and 10 mg/100 g in placenta. β-Carotene was detected only in placenta where its concentration was as much as 94.7 mg/100 g. The results indicate great prospects of ‘Konfetka’ components utilization (pulp, peel, placenta) in food industry, production of baby food and biologically active food additives, containing lutein and zeaxanthin.Актуальность. Тыква является важнейшим источником каротиноидов для человека: бета- и альфа-каротина, лютеина и зеаксантина, играющих фундаментальную роль в обеспечении сумеречного и соответственно цветового зрения у человека.Результаты. Исследование каротиноидного состава мякоти тыквы сорта Конфетка впервые позволило выявить, что это единственный известный в настоящее время сорт, накапливающий исключительно лютеин в мякоти и лютеин и зеаксантин в кожуре. Содержание лютеина в мякоти тыквы составляло 11 мг/100 г, кожуре – 41,3 мг/100 г, плаценте – 51,2 мг/100 г. Уровень зеаксантина отсутствовал в мякоти и составил в кожуре – 28,3 мг/100 г, и в плаценте – 10 мг/100 г. Бета-каротин был обнаружен только в плаценте, где его содержание достигало 94,7 мг/100 г. Полученные данные свидетельствуют о перспективности использования всех частей тыквы сорта Конфетка как в пищевой промышленности, так и в производстве детских продуктов питания и БАДов, содержащих лютеин и зеаксантин

    Перспективы производства и использования сока ревеня

    Get PDF
    The review is devoted to the nutritional significance and prospects of garden rhubarb (Rheum rhabarbarum L.) utilization in food industry. High yield of juice reaching 90% and the ability to complex rhubarb stems processing for juice production and pectin extraction from rhubarb stem pomace are empathized. Rhubarb stems pomace recorded up to 21-23 % of pectin, which is significantly higher than in natural industrial sources of pectin. Medicinal value of rhubarb juice is discussed: antioxidant, anti-inflammatory, anti-carcinogenic, cardioprotective and anti-diabetic properties are indicated. Examples of high antioxidant content and unique organic acids composition of rhubarb juice are highlighted. Sorbic and benzoic acids are indicated as important components of juice widely used in food industry as food preservatives. Citric acid is shown to be the main component of rhubarb organic acids in spring. Special attention is paid to the non-waste production of juice thanks to the possibility of pomace processing for pectin recovery. Juice biochemical characteristics of four garden rhubarb cultivars (selection of Federal Scientific Center of Vegetable Production) are described: Udalets, Malakhit, Zaryanka and Krupnochereshkovy). Expediency of further selection on high anthocyanin content in rhubarb stems are empathized.Обзор посвящен пищевой ценности и перспективам использования сока ревеня садового (Rheum rhabarbarum L.) в пищевой промышленности. Отмечается высокий выход сока, достигающий 90%, а также возможность комплексной переработки сырья для получения сока и пектина из жмыха. Показано, что жмых черешков ревеня содержит от 21 до 23% пектина, что достоверно выше, чем в используемых в настоящее время природных источниках пектина. Обсуждается лекарственная ценность продукта, проявляющего антиоксидантное, противовоспалительное, противораковое, кардиопротекторное и антидиабетическое действие. Приводятся примеры высокого содержания антиоксидантов в соке и уникальный компонентный состав органических кислот, включая сорбиновую и бензойную, применяемых в качестве стабилизаторов в продуктах питания. Отмечается, что основной органической кислотой ревеня садового на ранней стадии развития (весной) является лимонная кислота. Особое внимание уделяется безотходности производства сока из черешков ревеня благодаря перспективам применения жмыха как значимого источника пектина. Приведена биохимическая характеристика сока 4-х сортов ревеня садового селекции ФГБНУ ФНЦО: Удалец, Малахит, Зарянка и Крупночерешковый. Отмечается целесообразность осуществления селекции ревеня на повышенное содержание антоцианов

    Radioactivity control strategy for the JUNO detector

    Get PDF
    602siopenJUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day (cpd), therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz (i.e. ∼1 cpd accidental background) in the default fiducial volume, above an energy threshold of 0.7 MeV. [Figure not available: see fulltext.]openAbusleme A.; Adam T.; Ahmad S.; Ahmed R.; Aiello S.; Akram M.; An F.; An Q.; Andronico G.; Anfimov N.; Antonelli V.; Antoshkina T.; Asavapibhop B.; de Andre J.P.A.M.; Auguste D.; Babic A.; Baldini W.; Barresi A.; Basilico D.; Baussan E.; Bellato M.; Bergnoli A.; Birkenfeld T.; Blin S.; Blum D.; Blyth S.; Bolshakova A.; Bongrand M.; Bordereau C.; Breton D.; Brigatti A.; Brugnera R.; Bruno R.; Budano A.; Buscemi M.; Busto J.; Butorov I.; Cabrera A.; Cai H.; Cai X.; Cai Y.; Cai Z.; Cammi A.; Campeny A.; Cao C.; Cao G.; Cao J.; Caruso R.; Cerna C.; Chang J.; Chang Y.; Chen P.; Chen P.-A.; Chen S.; Chen X.; Chen Y.-W.; Chen Y.; Chen Y.; Chen Z.; Cheng J.; Cheng Y.; Chetverikov A.; Chiesa D.; Chimenti P.; Chukanov A.; Claverie G.; Clementi C.; Clerbaux B.; Conforti Di Lorenzo S.; Corti D.; Cremonesi O.; Dal Corso F.; Dalager O.; De La Taille C.; Deng J.; Deng Z.; Deng Z.; Depnering W.; Diaz M.; Ding X.; Ding Y.; Dirgantara B.; Dmitrievsky S.; Dohnal T.; Dolzhikov D.; Donchenko G.; Dong J.; Doroshkevich E.; Dracos M.; Druillole F.; Du S.; Dusini S.; Dvorak M.; Enqvist T.; Enzmann H.; Fabbri A.; Fajt L.; Fan D.; Fan L.; Fang J.; Fang W.; Fargetta M.; Fedoseev D.; Fekete V.; Feng L.-C.; Feng Q.; Ford R.; Formozov A.; Fournier A.; Gan H.; Gao F.; Garfagnini A.; Giammarchi M.; Giaz A.; Giudice N.; Gonchar M.; Gong G.; Gong H.; Gornushkin Y.; Gottel A.; Grassi M.; Grewing C.; Gromov V.; Gu M.; Gu X.; Gu Y.; Guan M.; Guardone N.; Gul M.; Guo C.; Guo J.; Guo W.; Guo X.; Guo Y.; Hackspacher P.; Hagner C.; Han R.; Han Y.; Hassan M.S.; He M.; He W.; Heinz T.; Hellmuth P.; Heng Y.; Herrera R.; Hor Y.K.; Hou S.; Hsiung Y.; Hu B.-Z.; Hu H.; Hu J.; Hu J.; Hu S.; Hu T.; Hu Z.; Huang C.; Huang G.; Huang H.; Huang W.; Huang X.; Huang X.; Huang Y.; Hui J.; Huo L.; Huo W.; Huss C.; Hussain S.; Ioannisian A.; Isocrate R.; Jelmini B.; Jen K.-L.; Jeria I.; Ji X.; Ji X.; Jia H.; Jia J.; Jian S.; Jiang D.; Jiang X.; Jin R.; Jing X.; Jollet C.; Joutsenvaara J.; Jungthawan S.; Kalousis L.; Kampmann P.; Kang L.; Karaparambil R.; Kazarian N.; Khan W.; Khosonthongkee K.; Korablev D.; Kouzakov K.; Krasnoperov A.; Kruth A.; Kutovskiy N.; Kuusiniemi P.; Lachenmaier T.; Landini C.; Leblanc S.; Lebrin V.; Lefevre F.; Lei R.; Leitner R.; Leung J.; Li D.; Li F.; Li F.; Li H.; Li H.; Li J.; Li M.; Li M.; Li N.; Li N.; Li Q.; Li R.; Li S.; Li T.; Li W.; Li W.; Li X.; Li X.; Li X.; Li Y.; Li Y.; Li Z.; Li Z.; Li Z.; Liang H.; Liang H.; Liao J.; Liebau D.; Limphirat A.; Limpijumnong S.; Lin G.-L.; Lin S.; Lin T.; Ling J.; Lippi I.; Liu F.; Liu H.; Liu H.; Liu H.; Liu H.; Liu H.; Liu J.; Liu J.; Liu M.; Liu Q.; Liu Q.; Liu R.; Liu S.; Liu S.; Liu S.; Liu X.; Liu X.; Liu Y.; Liu Y.; Lokhov A.; Lombardi P.; Lombardo C.; Loo K.; Lu C.; Lu H.; Lu J.; Lu J.; Lu S.; Lu X.; Lubsandorzhiev B.; Lubsandorzhiev S.; Ludhova L.; Luo F.; Luo G.; Luo P.; Luo S.; Luo W.; Lyashuk V.; Ma B.; Ma Q.; Ma S.; Ma X.; Ma X.; Maalmi J.; Malyshkin Y.; Mantovani F.; Manzali F.; Mao X.; Mao Y.; Mari S.M.; Marini F.; Marium S.; Martellini C.; Martin-Chassard G.; Martini A.; Mayer M.; Mayilyan D.; Mednieks I.; Meng Y.; Meregaglia A.; Meroni E.; Meyhofer D.; Mezzetto M.; Miller J.; Miramonti L.; Montini P.; Montuschi M.; Muller A.; Nastasi M.; Naumov D.V.; Naumova E.; Navas-Nicolas D.; Nemchenok I.; Nguyen Thi M.T.; Ning F.; Ning Z.; Nunokawa H.; Oberauer L.; Ochoa-Ricoux J.P.; Olshevskiy A.; Orestano D.; Ortica F.; Othegraven R.; Pan H.-R.; Paoloni A.; Parmeggiano S.; Pei Y.; Pelliccia N.; Peng A.; Peng H.; Perrot F.; Petitjean P.-A.; Petrucci F.; Pilarczyk O.; Pineres Rico L.F.; Popov A.; Poussot P.; Pratumwan W.; Previtali E.; Qi F.; Qi M.; Qian S.; Qian X.; Qian Z.; Qiao H.; Qin Z.; Qiu S.; Rajput M.U.; Ranucci G.; Raper N.; Re A.; Rebber H.; Rebii A.; Ren B.; Ren J.; Ricci B.; Robens M.; Roche M.; Rodphai N.; Romani A.; Roskovec B.; Roth C.; Ruan X.; Ruan X.; Rujirawat S.; Rybnikov A.; Sadovsky A.; Saggese P.; Sanfilippo S.; Sangka A.; Sanguansak N.; Sawangwit U.; Sawatzki J.; Sawy F.; Schever M.; Schwab C.; Schweizer K.; Selyunin A.; Serafini A.; Settanta G.; Settimo M.; Shao Z.; Sharov V.; Shaydurova A.; Shi J.; Shi Y.; Shutov V.; Sidorenkov A.; Simkovic F.; Sirignano C.; Siripak J.; Sisti M.; Slupecki M.; Smirnov M.; Smirnov O.; Sogo-Bezerra T.; Sokolov S.; Songwadhana J.; Soonthornthum B.; Sotnikov A.; Sramek O.; Sreethawong W.; Stahl A.; Stanco L.; Stankevich K.; Stefanik D.; Steiger H.; Steinmann J.; Sterr T.; Stock M.R.; Strati V.; Studenikin A.; Sun S.; Sun X.; Sun Y.; Sun Y.; Suwonjandee N.; Szelezniak M.; Tang J.; Tang Q.; Tang Q.; Tang X.; Tietzsch A.; Tkachev I.; Tmej T.; Treskov K.; Triossi A.; Troni G.; Trzaska W.; Tuve C.; Ushakov N.; van den Boom J.; van Waasen S.; Vanroyen G.; Vassilopoulos N.; Vedin V.; Verde G.; Vialkov M.; Viaud B.; Vollbrecht M.C.; Volpe C.; Vorobel V.; Voronin D.; Votano L.; Walker P.; Wang C.; Wang C.-H.; Wang E.; Wang G.; Wang J.; Wang J.; Wang K.; Wang L.; Wang M.; Wang M.; Wang M.; Wang R.; Wang S.; Wang W.; Wang W.; Wang W.; Wang X.; Wang X.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Z.; Wang Z.; Wang Z.; Wang Z.; Waqas M.; Watcharangkool A.; Wei L.; Wei W.; Wei W.; Wei Y.; Wen L.; Wiebusch C.; Wong S.C.-F.; Wonsak B.; Wu D.; Wu F.; Wu Q.; Wu Z.; Wurm M.; Wurtz J.; Wysotzki C.; Xi Y.; Xia D.; Xie X.; Xie Y.; Xie Z.; Xing Z.; Xu B.; Xu C.; Xu D.; Xu F.; Xu H.; Xu J.; Xu J.; Xu M.; Xu Y.; Xu Y.; Yan B.; Yan T.; Yan W.; Yan X.; Yan Y.; Yang A.; Yang C.; Yang C.; Yang H.; Yang J.; Yang L.; Yang X.; Yang Y.; Yang Y.; Yao H.; Yasin Z.; Ye J.; Ye M.; Ye Z.; Yegin U.; Yermia F.; Yi P.; Yin N.; Yin X.; You Z.; Yu B.; Yu C.; Yu C.; Yu H.; Yu M.; Yu X.; Yu Z.; Yu Z.; Yuan C.; Yuan Y.; Yuan Z.; Yuan Z.; Yue B.; Zafar N.; Zambanini A.; Zavadskyi V.; Zeng S.; Zeng T.; Zeng Y.; Zhan L.; Zhang A.; Zhang F.; Zhang G.; Zhang H.; Zhang H.; Zhang J.; Zhang J.; Zhang J.; Zhang J.; Zhang J.; Zhang P.; Zhang Q.; Zhang S.; Zhang S.; Zhang T.; Zhang X.; Zhang X.; Zhang X.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Z.; Zhang Z.; Zhao F.; Zhao J.; Zhao R.; Zhao S.; Zhao T.; Zheng D.; Zheng H.; Zheng M.; Zheng Y.; Zhong W.; Zhou J.; Zhou L.; Zhou N.; Zhou S.; Zhou T.; Zhou X.; Zhu J.; Zhu K.; Zhu K.; Zhu Z.; Zhuang B.; Zhuang H.; Zong L.; Zou J.Abusleme, A.; Adam, T.; Ahmad, S.; Ahmed, R.; Aiello, S.; Akram, M.; An, F.; An, Q.; Andronico, G.; Anfimov, N.; Antonelli, V.; Antoshkina, T.; Asavapibhop, B.; de Andre, J. P. A. M.; Auguste, D.; Babic, A.; Baldini, W.; Barresi, A.; Basilico, D.; Baussan, E.; Bellato, M.; Bergnoli, A.; Birkenfeld, T.; Blin, S.; Blum, D.; Blyth, S.; Bolshakova, A.; Bongrand, M.; Bordereau, C.; Breton, D.; Brigatti, A.; Brugnera, R.; Bruno, R.; Budano, A.; Buscemi, M.; Busto, J.; Butorov, I.; Cabrera, A.; Cai, H.; Cai, X.; Cai, Y.; Cai, Z.; Cammi, A.; Campeny, A.; Cao, C.; Cao, G.; Cao, J.; Caruso, R.; Cerna, C.; Chang, J.; Chang, Y.; Chen, P.; Chen, P. -A.; Chen, S.; Chen, X.; Chen, Y. -W.; Chen, Y.; Chen, Y.; Chen, Z.; Cheng, J.; Cheng, Y.; Chetverikov, A.; Chiesa, D.; Chimenti, P.; Chukanov, A.; Claverie, G.; Clementi, C.; Clerbaux, B.; Conforti Di Lorenzo, S.; Corti, D.; Cremonesi, O.; Dal Corso, F.; Dalager, O.; De La Taille, C.; Deng, J.; Deng, Z.; Deng, Z.; Depnering, W.; Diaz, M.; Ding, X.; Ding, Y.; Dirgantara, B.; Dmitrievsky, S.; Dohnal, T.; Dolzhikov, D.; Donchenko, G.; Dong, J.; Doroshkevich, E.; Dracos, M.; Druillole, F.; Du, S.; Dusini, S.; Dvorak, M.; Enqvist, T.; Enzmann, H.; Fabbri, A.; Fajt, L.; Fan, D.; Fan, L.; Fang, J.; Fang, W.; Fargetta, M.; Fedoseev, D.; Fekete, V.; Feng, L. -C.; Feng, Q.; Ford, R.; Formozov, A.; Fournier, A.; Gan, H.; Gao, F.; Garfagnini, A.; Giammarchi, M.; Giaz, A.; Giudice, N.; Gonchar, M.; Gong, G.; Gong, H.; Gornushkin, Y.; Gottel, A.; Grassi, M.; Grewing, C.; Gromov, V.; Gu, M.; Gu, X.; Gu, Y.; Guan, M.; Guardone, N.; Gul, M.; Guo, C.; Guo, J.; Guo, W.; Guo, X.; Guo, Y.; Hackspacher, P.; Hagner, C.; Han, R.; Han, Y.; Hassan, M. S.; He, M.; He, W.; Heinz, T.; Hellmuth, P.; Heng, Y.; Herrera, R.; Hor, Y. K.; Hou, S.; Hsiung, Y.; Hu, B. -Z.; Hu, H.; Hu, J.; Hu, J.; Hu, S.; Hu, T.; Hu, Z.; Huang, C.; Huang, G.; Huang, H.; Huang, W.; Huang, X.; Huang, X.; Huang, Y.; Hui, J.; Huo, L.; Huo, W.; Huss, C.; Hussain, S.; Ioannisian, A.; Isocrate, R.; Jelmini, B.; Jen, K. -L.; Jeria, I.; Ji, X.; Ji, X.; Jia, H.; Jia, J.; Jian, S.; Jiang, D.; Jiang, X.; Jin, R.; Jing, X.; Jollet, C.; Joutsenvaara, J.; Jungthawan, S.; Kalousis, L.; Kampmann, P.; Kang, L.; Karaparambil, R.; Kazarian, N.; Khan, W.; Khosonthongkee, K.; Korablev, D.; Kouzakov, K.; Krasnoperov, A.; Kruth, A.; Kutovskiy, N.; Kuusiniemi, P.; Lachenmaier, T.; Landini, C.; Leblanc, S.; Lebrin, V.; Lefevre, F.; Lei, R.; Leitner, R.; Leung, J.; Li, D.; Li, F.; Li, F.; Li, H.; Li, H.; Li, J.; Li, M.; Li, M.; Li, N.; Li, N.; Li, Q.; Li, R.; Li, S.; Li, T.; Li, W.; Li, W.; Li, X.; Li, X.; Li, X.; Li, Y.; Li, Y.; Li, Z.; Li, Z.; Li, Z.; Liang, H.; Liang, H.; Liao, J.; Liebau, D.; Limphirat, A.; Limpijumnong, S.; Lin, G. -L.; Lin, S.; Lin, T.; Ling, J.; Lippi, I.; Liu, F.; Liu, H.; Liu, H.; Liu, H.; Liu, H.; Liu, H.; Liu, J.; Liu, J.; Liu, M.; Liu, Q.; Liu, Q.; Liu, R.; Liu, S.; Liu, S.; Liu, S.; Liu, X.; Liu, X.; Liu, Y.; Liu, Y.; Lokhov, A.; Lombardi, P.; Lombardo, C.; Loo, K.; Lu, C.; Lu, H.; Lu, J.; Lu, J.; Lu, S.; Lu, X.; Lubsandorzhiev, B.; Lubsandorzhiev, S.; Ludhova, L.; Luo, F.; Luo, G.; Luo, P.; Luo, S.; Luo, W.; Lyashuk, V.; Ma, B.; Ma, Q.; Ma, S.; Ma, X.; Ma, X.; Maalmi, J.; Malyshkin, Y.; Mantovani, F.; Manzali, F.; Mao, X.; Mao, Y.; Mari, S. M.; Marini, F.; Marium, S.; Martellini, C.; Martin-Chassard, G.; Martini, A.; Mayer, M.; Mayilyan, D.; Mednieks, I.; Meng, Y.; Meregaglia, A.; Meroni, E.; Meyhofer, D.; Mezzetto, M.; Miller, J.; Miramonti, L.; Montini, P.; Montuschi, M.; Muller, A.; Nastasi, M.; Naumov, D. V.; Naumova, E.; Navas-Nicolas, D.; Nemchenok, I.; Nguyen Thi, M. T.; Ning, F.; Ning, Z.; Nunokawa, H.; Oberauer, L.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Orestano, D.; Ortica, F.; Othegraven, R.; Pan, H. -R.; Paoloni, A.; Parmeggiano, S.; Pei, Y.; Pelliccia, N.; Peng, A.; Peng, H.; Perrot, F.; Petitjean, P. -A.; Petrucci, F.; Pilarczyk, O.; Pineres Rico, L. F.; Popov, A.; Poussot, P.; Pratumwan, W.; Previtali, E.; Qi, F.; Qi, M.; Qian, S.; Qian, X.; Qian, Z.; Qiao, H.; Qin, Z.; Qiu, S.; Rajput, M. U.; Ranucci, G.; Raper, N.; Re, A.; Rebber, H.; Rebii, A.; Ren, B.; Ren, J.; Ricci, B.; Robens, M.; Roche, M.; Rodphai, N.; Romani, A.; Roskovec, B.; Roth, C.; Ruan, X.; Ruan, X.; Rujirawat, S.; Rybnikov, A.; Sadovsky, A.; Saggese, P.; Sanfilippo, S.; Sangka, A.; Sanguansak, N.; Sawangwit, U.; Sawatzki, J.; Sawy, F.; Schever, M.; Schwab, C.; Schweizer, K.; Selyunin, A.; Serafini, A.; Settanta, G.; Settimo, M.; Shao, Z.; Sharov, V.; Shaydurova, A.; Shi, J.; Shi, Y.; Shutov, V.; Sidorenkov, A.; Simkovic, F.; Sirignano, C.; Siripak, J.; Sisti, M.; Slupecki, M.; Smirnov, M.; Smirnov, O.; Sogo-Bezerra, T.; Sokolov, S.; Songwadhana, J.; Soonthornthum, B.; Sotnikov, A.; Sramek, O.; Sreethawong, W.; Stahl, A.; Stanco, L.; Stankevich, K.; Stefanik, D.; Steiger, H.; Steinmann, J.; Sterr, T.; Stock, M. R.; Strati, V.; Studenikin, A.; Sun, S.; Sun, X.; Sun, Y.; Sun, Y.; Suwonjandee, N.; Szelezniak, M.; Tang, J.; Tang, Q.; Tang, Q.; Tang, X.; Tietzsch, A.; Tkachev, I.; Tmej, T.; Treskov, K.; Triossi, A.; Troni, G.; Trzaska, W.; Tuve, C.; Ushakov, N.; van den Boom, J.; van Waasen, S.; Vanroyen, G.; Vassilopoulos, N.; Vedin, V.; Verde, G.; Vialkov, M.; Viaud, B.; Vollbrecht, M. C.; Volpe, C.; Vorobel, V.; Voronin, D.; Votano, L.; Walker, P.; Wang, C.; Wang, C. -H.; Wang, E.; Wang, G.; Wang, J.; Wang, J.; Wang, K.; Wang, L.; Wang, M.; Wang, M.; Wang, M.; Wang, R.; Wang, S.; Wang, W.; Wang, W.; Wang, W.; Wang, X.; Wang, X.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Z.; Wang, Z.; Wang, Z.; Wang, Z.; Waqas, M.; Watcharangkool, A.; Wei, L.; Wei, W.; Wei, W.; Wei, Y.; Wen, L.; Wiebusch, C.; Wong, S. C. -F.; Wonsak, B.; Wu, D.; Wu, F.; Wu, Q.; Wu, Z.; Wurm, M.; Wurtz, J.; Wysotzki, C.; Xi, Y.; Xia, D.; Xie, X.; Xie, Y.; Xie, Z.; Xing, Z.; Xu, B.; Xu, C.; Xu, D.; Xu, F.; Xu, H.; Xu, J.; Xu, J.; Xu, M.; Xu, Y.; Xu, Y.; Yan, B.; Yan, T.; Yan, W.; Yan, X.; Yan, Y.; Yang, A.; Yang, C.; Yang, C.; Yang, H.; Yang, J.; Yang, L.; Yang, X.; Yang, Y.; Yang, Y.; Yao, H.; Yasin, Z.; Ye, J.; Ye, M.; Ye, Z.; Yegin, U.; Yermia, F.; Yi, P.; Yin, N.; Yin, X.; You, Z.; Yu, B.; Yu, C.; Yu, C.; Yu, H.; Yu, M.; Yu, X.; Yu, Z.; Yu, Z.; Yuan, C.; Yuan, Y.; Yuan, Z.; Yuan, Z.; Yue, B.; Zafar, N.; Zambanini, A.; Zavadskyi, V.; Zeng, S.; Zeng, T.; Zeng, Y.; Zhan, L.; Zhang, A.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, H.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, P.; Zhang, Q.; Zhang, S.; Zhang, S.; Zhang, T.; Zhang, X.; Zhang, X.; Zhang, X.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Z.; Zhang, Z.; Zhao, F.; Zhao, J.; Zhao, R.; Zhao, S.; Zhao, T.; Zheng, D.; Zheng, H.; Zheng, M.; Zheng, Y.; Zhong, W.; Zhou, J.; Zhou, L.; Zhou, N.; Zhou, S.; Zhou, T.; Zhou, X.; Zhu, J.; Zhu, K.; Zhu, K.; Zhu, Z.; Zhuang, B.; Zhuang, H.; Zong, L.; Zou, J

    The evolution of sedimentary rock in the Earth’s history

    No full text

    The late visean-serpukhovian stage in paleozoic reef formation

    No full text

    Nutritional value, quality of raw materials and food value of vegetable pea culture (<i>Pisum sativum</i> L.)

    Get PDF
    Vegetable peas are by far the most widely used among the main vegetable legumes. Due to its high nutritional value, it has an important food value and is cultivated almost everywhere. High nutritional qualities of vegetable peas are determined by the content of protein, carbohydrates, dietary fiber, vitamins, as well as macro– and microelements. Pea protein is popular due to its affordable price compared to animal protein. The value of pea protein is determined by its amino acid composition and its high balance, especially valuable amino acids that are not synthesized in animals and humans.The article discusses the nutritional value of vegetable peas (green beans; fresh, frozen and canned vegetable peas; dry seeds); the content of water-soluble protein, amino acid composition, the content of macro- and microelements in the seeds of vegetable peas of FSBSI FSVC selection varieties; the quality of green peas as raw materials for canning, depending on the type of seeds and the structure of starch grains; requirements for the quality of raw vegetable peas for canning; seedlings and microgreens as useful and nutritious products for fresh consumption; medicinal properties of vegetable peas; varieties of vegetable peas for various uses
    corecore