1,287 research outputs found
Information content of colored motifs in complex networks
We study complex networks in which the nodes of the network are tagged with
different colors depending on the functionality of the nodes (colored graphs),
using information theory applied to the distribution of motifs in such
networks. We find that colored motifs can be viewed as the building blocks of
the networks (much more so than the uncolored structural motifs can be) and
that the relative frequency with which these motifs appear in the network can
be used to define the information content of the network. This information is
defined in such a way that a network with random coloration (but keeping the
relative number of nodes with different colors the same) has zero color
information content. Thus, colored motif information captures the
exceptionality of coloring in the motifs that is maintained via selection. We
study the motif information content of the C. elegans brain as well as the
evolution of colored motif information in networks that reflect the interaction
between instructions in genomes of digital life organisms. While we find that
colored motif information appears to capture essential functionality in the C.
elegans brain (where the color assignment of nodes is straightforward) it is
not obvious whether the colored motif information content always increases
during evolution, as would be expected from a measure that captures network
complexity. For a single choice of color assignment of instructions in the
digital life form Avida, we find rather that colored motif information content
increases or decreases during evolution, depending on how the genomes are
organized, and therefore could be an interesting tool to dissect genomic
rearrangements.Comment: 21 pages, 8 figures, to appear in Artificial Lif
Investigation of bio-regenerative life support and Trash-to-gas experiment on a 4 month mars simulation mission
Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Center’s (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purpose of this study is to show how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSC’s TtG technology
Scaling metagenome sequence assembly with probabilistic de Bruijn graphs
Deep sequencing has enabled the investigation of a wide range of
environmental microbial ecosystems, but the high memory requirements for {\em
de novo} assembly of short-read shotgun sequencing data from these complex
populations are an increasingly large practical barrier. Here we introduce a
memory-efficient graph representation with which we can analyze the k-mer
connectivity of metagenomic samples. The graph representation is based on a
probabilistic data structure, a Bloom filter, that allows us to efficiently
store assembly graphs in as little as 4 bits per k-mer, albeit inexactly. We
show that this data structure accurately represents DNA assembly graphs in low
memory. We apply this data structure to the problem of partitioning assembly
graphs into components as a prelude to assembly, and show that this reduces the
overall memory requirements for {\em de novo} assembly of metagenomes. On one
soil metagenome assembly, this approach achieves a nearly 40-fold decrease in
the maximum memory requirements for assembly. This probabilistic graph
representation is a significant theoretical advance in storing assembly graphs
and also yields immediate leverage on metagenomic assembly
Integration of TCP/IP and PROFIBUS protocols
Recent technological developments are pulling
fieldbus networks to support a new wide class of
applications, such as industrial multimedia applications.
These applications are usually supported by the widely
used TCP/IP stack. It is thus essential to provide support
to TCP/IP based applications, in fieldbus networks.
This paper presents an effort that is being carried out
to integrate the TCP/IP and PROFIBUS stacks, in order
to support industrial multimedia applications, whilst
guarantying the timing requirements of control-related
traffic
An in vitro comparison between two methods of electrical resistance measurement for occlusal caries detection
Because of different measurement techniques and the easier design of the CRM prototype, this in vitro study aimed to compare the diagnostic performance and reproducibility of two electrical methods (Electronic Caries Monitor III, ECM and Cariometer 800, CRM) for occlusal caries detection, and to evaluate the effect of staining/ discoloration of fissures on diagnostic performance. Hundred and seventeen third molars with no apparent occlusal cavitation were selected. Six examiners inspected all specimens independently, using the CRM, and a subgroup of 4 using the ECM. Histological validation using a stereomicroscope was performed after hemisectioning. Intra- and interexaminer reproducibility was assessed by Lin's concordance correlation coefficient (CCC) and Bland and Altman analysis. Diagnostic performance parameters included sensitivity (SE), specificity (SP) and area under the ROC curve (A(z)). The CCC yielded an intra- and interexaminer reproducibility of 0.69/0.62 (ECM) and of 0.79/0.74 (CRM). The mean intra- and interexaminer 95% range of measurements (range between Bland and Altman limits of agreement) given in percentages of the instrument reading were 67%/65% for the ECM and 28%/33% for the CRM. A(z) at the D3-4 level was 0.74 (ECM) and 0.78 (CRM). The CRM showed at least equivalent diagnostic performance to the ECM. However, improvement is still desirable. Diagnostic performance appeared to be enhanced in discolored lesions; however, this may be related to sample lesion distribution characteristics. Copyright (C) 2006 S. Karger AG, Basel
The evolution of representation in simple cognitive networks
Representations are internal models of the environment that can provide
guidance to a behaving agent, even in the absence of sensory information. It is
not clear how representations are developed and whether or not they are
necessary or even essential for intelligent behavior. We argue here that the
ability to represent relevant features of the environment is the expected
consequence of an adaptive process, give a formal definition of representation
based on information theory, and quantify it with a measure R. To measure how R
changes over time, we evolve two types of networks---an artificial neural
network and a network of hidden Markov gates---to solve a categorization task
using a genetic algorithm. We find that the capacity to represent increases
during evolutionary adaptation, and that agents form representations of their
environment during their lifetime. This ability allows the agents to act on
sensorial inputs in the context of their acquired representations and enables
complex and context-dependent behavior. We examine which concepts (features of
the environment) our networks are representing, how the representations are
logically encoded in the networks, and how they form as an agent behaves to
solve a task. We conclude that R should be able to quantify the representations
within any cognitive system, and should be predictive of an agent's long-term
adaptive success.Comment: 36 pages, 10 figures, one Tabl
RIM-Binding Protein 2 organizes Ca2+channel topography and regulates release probability and vesicle replenishment at a fast central synapse
RIM-Binding Protein 2 (RIM-BP2) is a multi-domain protein of the presynaptic active zone (AZ). By binding to Rab-interacting protein (RIM), bassoon and voltage-gated Ca²⁺channels (CaV), it is considered to be a central organizer of the topography of CaVand release sites of synaptic vesicles (SVs) at the AZ. Here, we investigated the role of RIM-BP2 at the endbulb of Held synapse of auditory nerve fibers with bushy cells of the cochlear nucleus, a fast relay of the auditory pathway with high release probability. Disruption of RIM-BP2 lowered release probability altering short-term plasticity and reduced evoked excitatory postsynaptic currents (EPSCs). Analysis of SV pool dynamics during high frequency train stimulation indicated a reduction of SVs with high release probability but an overall normal size of the readily releasable SV pool (RRP). The Ca2+-dependent fast component of SV replenishment after RRP depletion was slowed. Ultrastructural analysis by super-resolution light and electron microscopy revealed an impaired topography of presynaptic CaVand a reduction of docked and membrane-proximal SVs at the AZ. We conclude that RIM-BP2 organizes the topography of CaV, and promotes SV tethering and docking. This way RIM-BP2 is critical for establishing a high initial release probability as required to reliably signal sound onset information that we found to be degraded in bushy cells of RIM-BP2-deficient mice in vivo
Degradation of Organics in a Glow Discharge Under Martian Conditions
The primary objective of this project is to understand the consequences of glow electrical discharges on the chemistry and biology of Mars. The possibility was raised some time ago that the absence of organic material and carbonaceous matter in the Martian soil samples studied by the VikinG Landers might be due in part to an intrinsic atmospheric mechanism such as glow discharge. The high probability for dust interactions during Martian dust storms and dust devils, combined with the cold, dry climate of Mars most likely results in airborne dust that is highly charged. Such high electrostatic potentials generated during dust storms on Earth are not permitted in the low-pressure CO2 environment on Mars; therefore electrostatic energy released in the form of glow discharges is a highly likely phenomenon. Since glow discharge methods are used for cleaning and sterilizing surfaces throughout industry, the idea that dust in the Martian atmosphere undergoes a cleaning action many times over geologic time scales appears to be a plausible one
- …