217 research outputs found
Simulation of Deformation-induced Martensite Formation and its Influence on the Resonant Behavior in the Very High Cycle Fatigue (VHCF) Regime
AbstractThe exploration of fatigue mechanisms in the VHCF regime is gaining importance since many components have to withstand a very high number of loading cycles due to high frequency or long product life. In this regime, particular attention is paid to the period of fatigue crack initiation and thus the localization of plastic deformation. The resonant behavior of a metastable austenitic stainless steel (AISI304) is studied experimentally in the VHCF regime and shows a distinct transient characteristic. The major contribution of this work is to obtain a physically-based understanding of this characteristic by modeling the underlying microstructural mechanisms and their influence on the resonant behavior. Microscopic examinations indicate that AISI304 undergoes deformation-induced martensite formation starting mostly at intersecting shear bands during fatigue. Therefore, a microstructural shear band model [Hilgendorff et al. (2013)] is extended regarding the mechanism of deformation-induced martensite formation. The model accounts for the microstructural mechanisms occurring in shear bands as documented by experimental results, and nucleation of martensite is assumed to occur at intersecting shear bands following the Olsen-Cohen nucleation model (1972) in combination with the Bogers-Burgers mechanism (1964). The simulation model is numerically solved using the two-dimensional (2-D) boundary element method. By using this method, a 2-D microstructure can be modeled considering grain orientations as well as individual anisotropic elastic properties in each grain. The resonant behavior is characterized by evaluating the force-displacement hysteresis loop. Results show that plastic deformation in shear bands and deformation-induced martensite formation have a major impact on the resonant behavior in the very high cycle fatigue (VHCF) regime
Surfactant replacement and open lung concept – Comparison of two treatment strategies in an experimental model of neonatal ARDS
Background: Several concepts of treatment in neonatal ARDS have been proposed in the last years. The present study compared the effects of open lung concept positive pressure ventilation (PPVOLC) with a conventional ventilation strategy combined with administration of two different surfactant preparations on lung function and surfactant homoeostasis. Methods: After repeated whole-lung saline lavage, 16 newborn piglets were assigned to either PPVOLC(n = 5) or surfactant treatment under conventional PPV using a natural bovine (n = 5) or a monomeric protein B based surfactant (n = 6). Results: Comprehensive monitoring showed each treatment strategy to improve gas exchange and lung function, although the effect on PaO2and pulmonary compliance declined over the study period in the surfactant groups. The overall improvement of the ventilation efficiency index (VEI) was significantly greater in the PPVOLCgroup. Phospholipid and protein analyses of the bronchoalveolar lavage fluid showed significant alterations to surfactant homoeostasis in the PPVOLCgroup, whereas IL-10 and SP-C mRNA expression was tendentially increased in the surfactant groups. Conclusion: The different treatment strategies applied could be shown to improve gas exchange and lung function in neonatal ARDS. To which extent differences in maintenance of lung function and surfactant homeostasis may lead to long-term consequences needs to be studied further
Simvastatin inhibits TLR8 signaling in primary human monocytes and spontaneous TNF production from rheumatoid synovial membrane cultures
Simvastatin has been shown to have anti-inflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these anti-inflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on Toll-like receptor (TLR) signalling in primary human monocytes was investigated. A short pre-treatment with simvastatin dose-dependently inhibited the production of tumor necrosis factor-α (TNF) in response to TLR8 (but not TLRs 2, 4, or 5) activation. Statins are known inhibitors of the cholesterol biosynthetic pathway, but intriguingly TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate; downstream products of cholesterol biosynthesis. TLR8 signalling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited IKKα/β phosphorylation and subsequent NF-κB activation without affecting the pathway to AP-1. Since simvastatin has been reported to have anti-inflammatory effects in RA patients and TLR8 signalling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signalling that may in part explain its beneficial anti-inflammatory effects
Gas exchange mechanisms in preterm infants on HFOV - a computational approach
High-frequency oscillatory ventilation (HFOV) is a commonly used therapy applied to neonates requiring ventilatory support during their first weeks of life. Despite its wide application, the underlying gas exchange mechanisms promoting the success of HVOF in neonatal care are not fully understood until today. In this work, a highly resolved computational lung model, derived from Magnetic Resonance Imaging (MRI) and Infant Lung Function Testing (ILFT), is used to reveal the reason for highly efficient gas exchange during HFOV, in the preterm infant. In total we detected six mechanisms that facilitate gas exchange during HFOV: (i) turbulent vortices in large airways;(ii) asymmetric in-and expiratory flow profiles;(iii) radial mixing in main bronchi;(iv) laminar flow in higher generations of the respiratory tract;(v) pendelluft;(vi) direct ventilation of central alveoli. The illustration of six specific gas transport phenomena during HFOV in preterm infants advances general knowledge on protective ventilation in neonatal care and can support decisions on various modes of ventilatory therapy at high frequencies
Validation of disease-specific biomarkers for the early detection of bronchopulmonary dysplasia
OBJECTIVE: To demonstrate and validate the improvement of current risk stratification for bronchopulmonary dysplasia (BPD) early after birth by plasma protein markers (sialic acid-binding lg-like lectin 14 (SIGLEC-14), basal cell adhesion molecule (BCAM), angiopoietin-like 3 protein (ANGPTL-3)) in extremely premature infants.METHODS AND RESULTS: Proteome screening in first-week-of-life plasma samples of n- 52 preterm infants <32 weeks gestational age (GA) on two proteomic platforms (SomaLogic (R), Olink-Proteomics (R)) confirmed three biomarkers with significant predictive power: BCAM, SIGLEC-14, and ANGPTL-3. We demonstrate high sensitivity (0.92) and specificity (0.86) under consideration of GA, show the proteins' critical contribution to the predictive power of known clinical risk factors, e.g., birth weight and GA, and predicted the duration of mechanical ventilation, oxygen supplementation, as well as neonatal intensive care stay. We confirmed significant predictive power for BPD cases when switching to a clinically applicable method (enzyme-linked immunosorbent assay) in an independent sample set (n = 25, p < 0.001) and demonstrated disease specificity in different cohorts of neonatal and adult lung disease.CONCLUSION: While successfully addressing typical challenges of clinical biomarker studies, we demonstrated the potential of BCAM, SIGLEC-14, and ANGPTL-3 to inform future clinical decision making in the preterm infant at risk for BPD.Analytical BioScience
- …