730 research outputs found
Air pollution control with semi-infinite programming
Environment issues are more than ever important in a modern society. Complying with
stricter legal thresholds on pollution emissions raises an important economic issue. This
paper presents some ideas in the use of optimization tools to help in the planning and control
of stationary pollution sources.
Three main semi-infinite programming approaches are described. The first consists in optimizing
an objective function while the pollution level in a given region is kept bellow a
given threshold. In the second approach the maximum pollution level in a given region
is computed and in the third an air pollution abatement problem is considered. These formulations
allow to obtain the best control parameters and the maxima pollution positions,
where the sampling stations should be placed.
A specific modeling language was used to code four academic problems. Numerical results
computed with a semi-infinite programming solver are shown
Coherent control in a decoherence-free subspace of a collective multi-level system
Decoherence-free subspaces (DFS) in systems of dipole-dipole interacting
multi-level atoms are investigated theoretically. It is shown that the
collective state space of two dipole-dipole interacting four-level atoms
contains a four-dimensional DFS. We describe a method that allows to populate
the antisymmetric states of the DFS by means of a laser field, without the need
of a field gradient between the two atoms. We identify these antisymmetric
states as long-lived entangled states. Further, we show that any single-qubit
operation between two states of the DFS can be induced by means of a microwave
field. Typical operation times of these qubit rotations can be significantly
shorter than for a nuclear spin system.Comment: 15 pages, 11 figure
Lifetimes of Confined Acoustic Phonons in Ultra-Thin Silicon Membranes
We study the relaxation of coherent acoustic phonon modes with frequencies up
to 500 GHz in ultra-thin free-standing silicon membranes. Using an ultrafast
pump-probe technique of asynchronous optical sampling, we observe that the
decay time of the first-order dilatational mode decreases significantly from
\sim 4.7 ns to 5 ps with decreasing membrane thickness from \sim 194 to 8 nm.
The experimental results are compared with theories considering both intrinsic
phonon-phonon interactions and extrinsic surface roughness scattering including
a wavelength-dependent specularity. Our results provide insight to understand
some of the limits of nanomechanical resonators and thermal transport in
nanostructures
Recommended from our members
Genome-Resolved Proteomic Stable Isotope Probing of Soil Microbial Communities Using 13CO2 and 13C-Methanol.
Stable isotope probing (SIP) enables tracking the nutrient flows from isotopically labeled substrates to specific microorganisms in microbial communities. In proteomic SIP, labeled proteins synthesized by the microbial consumers of labeled substrates are identified with a shotgun proteomics approach. Here, proteomic SIP was combined with targeted metagenomic binning to reconstruct metagenome-assembled genomes (MAGs) of the microorganisms producing labeled proteins. This approach was used to track carbon flows from 13CO2 to the rhizosphere communities of Zea mays, Triticum aestivum, and Arabidopsis thaliana. Rhizosphere microorganisms that assimilated plant-derived 13C were capable of metabolic and signaling interactions with their plant hosts, as shown by their MAGs containing genes for phytohormone modulation, quorum sensing, and transport and metabolism of nutrients typical of those found in root exudates. XoxF-type methanol dehydrogenases were among the most abundant proteins identified in the rhizosphere metaproteomes. 13C-methanol proteomic SIP was used to test the hypothesis that XoxF was used to metabolize and assimilate methanol in the rhizosphere. We detected 7 13C-labeled XoxF proteins and identified methylotrophic pathways in the MAGs of 8 13C-labeled microorganisms, which supported the hypothesis. These two studies demonstrated the capability of proteomic SIP for functional characterization of active microorganisms in complex microbial communities
Primary stability of a press-fit cup in combination with impaction grafting in an acetabular defect model
The objectives of this study were to (a) assess primary stability of a press-fit cup in a simplified acetabular defect model, filled with compacted cancellous bone chips, and (b) to compare the results with primary stability of a press-fit cup combined with two different types of bone graft substitute in the same defect model. A previously developed acetabular test model made of polyurethane foam was used, in which a mainly medial contained defect was implemented. Three test groups (N = 6 each) were prepared: Cancellous bone chips (bone chips), tricalciumphosphate tetrapods + collagen matrix (tetrapods + coll), bioactive glass S53P4 + polyethylene glycol-glycerol matrix (b.a.glass + PEG). Each material was compacted into the acetabulum and a press-fit cup was implanted. The specimens were loaded dynamically in the direction of the maximum resultant force during level walking. Relative motion between cup and test model was assessed with an optical measurement system. At the last load step (3000 N), inducible displacement was highest for bone chips with median [25th percentile; 75th percentile] value of 113 [110; 114] µm and lowest for b.a.glass + PEG with 91 [89; 93] µm. Migration at this load step was highest for b.a.glass + PEG with 868 [845; 936] µm and lowest for tetrapods + coll with 491 [487; 497] µm. The results show a comparable behavior under load of tetrapods + coll and bone chips and suggest that tetrapods + coll could be an attractive alternative to bone chips. However, so far, this was found for one specific defect type and primary stability should be further investigated in additional/more severe defects
Cryogenic platform for coupling color centers in diamond membranes to a fiber-based microcavity
We operate a fiber-based cavity with an inserted diamond membrane containing ensembles of silicon vacancy centers (SiV−) at cryogenic temperatures ≥4 K. The setup, sample fabrication and spectroscopic characterization are described, together with a demonstration of the cavity influence by the Purcell effect. This paves the way towards solid-state qubits coupled to optical interfaces as long-lived quantum memories
Electronic interactions in fullerene spheres
The electron-phonon and Coulomb interactions inC, and larger fullerene
spheres are analyzed. The coupling between electrons and intramolecular
vibrations give corrections meV to the electronic energies for
C, and scales as in larger molecules. The energies associated
with electrostatic interactions are of order eV, in C and
scale as . Charged fullerenes show enhanced electron-phonon coupling,
meV, which scales as . Finally, it is argued that non only
C, but also C are highly polarizable molecules. The
polarizabilities scale as and , respectively. The role of this large
polarizability in mediating intermolecular interactions is also discussed.Comment: 12 pages. No figure
An ultra-sensitive pulsed balanced homodyne detector: Application to time-domain quantum measurements
A pulsed balanced homodyne detector has been developed for precise
measurements of electric field quadratures of pulsed optical quantum states. A
high level of common mode suppression (> 85 dB) and low electronic noise (730
electrons per pulse) provide a signal to noise ratio of 14 dB for the
measurement of the quantum noise of individual pulses. Measurements at
repetition rates up to 1 MHz are possible. As a test, quantum tomography of the
coherent state is performed and the Wigner function and the density matrix are
reconstructed with a 99.5% fidelity. The detection system can also be used for
ultrasensitive balanced detection in cw mode, e.g. for weak absorption
measurements.Comment: 3 pages, submitted to Optics Letter
A method to assess primary stability of acetabular components in association with bone defects
The objectives of this study were to develop a simplified acetabular bone defect model based on a representative clinical case, derive four bone defect increments from the simplified defect to establish a step‐wise testing procedure, and analyze the impact of bone defect and bone defect filling on primary stability of a press‐fit cup in the smallest defined bone defect increment. The original bone defect was approximated with nine reaming procedures and by exclusion of specific procedures, four defect increments were derived. The smallest increment was used in an artificial acetabular test model to test primary stability of a press‐fit cup in combination with bone graft substitute (BGS). A primary acetabular test model and a defect model without filling were used as reference. Load was applied in direction of level walking in sinusoidal waveform with an incrementally increasing maximum load (300 N/1000 cycles from 600 to 3000 N). Relative motions (inducible displacement, migration, and total motion) between cup and test model were assessed with an optical measurement system. Original and simplified bone defect volume showed a conformity of 99%. Maximum total motion in the primary setup at 600 N (45.7 ± 5.6 µm) was in a range comparable to tests in human donor specimens (36.0 ± 16.8 µm). Primary stability was reduced by the bone defect, but could mostly be reestablished by BGS‐filling. The presented method could be used as platform to test and compare different treatment strategies for increasing bone defect severity in a standardized way
Transcriptomic and proteomic insights into innate immunity and adaptations to a symbiotic lifestyle in the gutless marine worm Olavius algarvensis
Background: The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. Here, we generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Results: Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, most likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm's symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. Additionally, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins. Conclusions: We show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. Our results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations
- …