1,161 research outputs found

    A summer time series of particulate carbon in the air and snow at Summit, Greenland

    Get PDF
    Carbonaceous particulate matter is ubiquitous in the lower atmosphere, produced by natural and anthropogenic sources and transported to distant regions, including the pristine and climate-sensitive Greenland Ice Sheet. During the summer of 2006, ambient particulate carbonaceous compounds were characterized on the Greenland Ice Sheet, including the measurement of particulate organic (OC) and elemental (EC) carbon, particulate water-soluble organic carbon (WSOC), particulate absorption coefficient (σap), and particle size-resolved number concentration (PM0.1–1.0). Additionally, parallel ∌50-day time series of water-soluble organic carbon (WSOC), water-insoluble organic carbon (WIOC), and elemental carbon (EC) were quantified at time increments of 4–24 h in the surface snow. Measurement of atmospheric particulate carbon found WSOC (average of 52 ng m−3) to constitute a major fraction of particulate OC (average of 56 ng m−3), suggesting that atmospheric organic compounds reaching the Greenland Ice Sheet in summer are highly oxidized. Atmospheric EC (average of 7 ng m−3) was well-correlated with σap (r = 0.95) and the calculated mass-absorption cross-section (average of 24 m2 g−1) appears to be similar to that measured using identical techniques in an urban environment in the United States. Comparing surface snow to atmospheric particulate matter concentrations, it appears the snow has a much higher OC (WSOC+WIOC) to EC ratio (205:1) than air (10:1), suggesting that snow is additionally influenced by water-soluble gas-phase compounds. Finally, the higher-frequency (every 4–6 h) sampling of snow-phase WSOC revealed significant loss (40–54%) of related organic compounds in surface snow within 8 h of wet deposition

    Computer simulation of protein systems

    Get PDF
    Ligand binding to dihydrofolate reductase (DHFR) is discussed. This is an extremely important enzyme, as it is the target of several drugs (inhibitors) which are used clinically as antibacterials, antiprotozoals and in cancer chemotherapy. DHFR catalyzes the NADPH (reduced nicotinamide adenine dinucleotide phosphate) dependent reduction of dihydrofolate to tetrahydrofolate, which is used in several pathways of purine and pyrimidine iosynthesis, including that of thymidylate. Since DNA synthesis is dependent on a continuing supply of thymidylate, a blockade of DHFR resulting in a depletion of thymidylate can lead to the cessation of growth of a rapidly proliferating cell line. DHFR exhibits a significant species to species variability in its sensitivity to various inhibitors. For example, trimethoprim, an inhibitor of DHFR, binds to bacterial DHFR's 5 orders of magnitude greater than to vertebrate DHFR's. The structural mechanics, dynamics and energetics of a family of dihydrofolate reductases are studied to rationalize the basis for the inhibitor of these enyzmes and to understand the molecular basis of the difference in the binding constants between the species. This involves investigating the conformational changes induced in the protein on binding the ligand, the internal strain imposed by the enzyme on the ligand, the restriction of fluctuations in atom positions due to binding and the consequent change in entropy

    Particulate and water-soluble carbon measured in recent snow at Summit, Greenland

    Get PDF
    Water-soluble organic carbon (WSOC), waterinsoluble particulate organic carbon (WIOC), and particulate elemental carbon (EC) were measured simultaneously for the first time on the Greenland Ice Sheet in surface snow and in a 3-meter snow pit. Snow pit concentrations reveal that, on average, WSOC makes up the majority (89%) of carbonaceous species, followed by WIOC (10%) and EC (1%). The enhancement of OC relative to EC (ratio 99:1) in Greenland snow suggests that, along with atmospheric particulate matter, gaseous organics contribute to snow-phase OC. Comparison of summer surface snow concentrations in 2006 with past summer snow pit layers (2002 – 2005) found a significant depletion in WSOC (20 – 82%) and WIOC (46 – 65%) relative to EC for 3 of the 4 years. The apparent substantial loss of WSOC and WIOC in aged snow suggests that post-depositional processes, such as photochemical reactions, need to be considered in linking ice core records of organics to atmospheric concentrations. Citation: Hagler, G. S. W., M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig (2007), Particulate and water-soluble carbon measured in recent snow at Summit, Greenland, Geophys. Res. Lett., 34, L16505, doi:10.1029/2007GL030110

    Signal processing in local neuronal circuits based on activity-dependent noise and competition

    Full text link
    We study the characteristics of weak signal detection by a recurrent neuronal network with plastic synaptic coupling. It is shown that in the presence of an asynchronous component in synaptic transmission, the network acquires selectivity with respect to the frequency of weak periodic stimuli. For non-periodic frequency-modulated stimuli, the response is quantified by the mutual information between input (signal) and output (network's activity), and is optimized by synaptic depression. Introducing correlations in signal structure resulted in the decrease of input-output mutual information. Our results suggest that in neural systems with plastic connectivity, information is not merely carried passively by the signal; rather, the information content of the signal itself might determine the mode of its processing by a local neuronal circuit.Comment: 15 pages, 4 pages, in press for "Chaos

    Quark Contributions to Nucleon Momentum and Spin from Domain Wall fermion calculations

    Full text link
    We report contributions to the nucleon spin and momentum from light quarks calculated using dynamical domain wall fermions with pion masses down to 300 MeV and fine lattice spacing a=0.084 fm. Albeit without disconnected diagrams, we observe that spin and orbital angular momenta of both u and d quarks are opposite, almost canceling in the case of the d quark, which agrees with previous calculations using a mixed quark action. We also present the full momentum dependence of n=2 generalized form factors showing little variation with the pion mass.Comment: 7 pages, 5 figures, NT-LBNL-11-020, MIT-CTP-4323. Presented at the 29th International Symposium on Lattice Field Theory (Lattice 2011), Squaw Valley, California, 10-16 Jul 201

    Generalized Parton Distributions in Full Lattice QCD

    Full text link
    We present recent results on generalized parton distributions from dynamical lattice QCD calculations. Our set of twelve different combinations of couplings and quark masses allows for a preliminary study of the pion mass dependence of the transverse nucleon structure.Comment: 8 pages, 5 figures; Talk presented by Ph.H. at Light-Cone 2004, Amsterdam, 16 - 20 Augus

    Transverse momentum distributions inside the nucleon from lattice QCD

    Get PDF
    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.United States. Dept. of Energy (grant DE-FG02-94ER40818

    Transverse momentum dependent quark densities from Lattice QCD

    Get PDF
    We study transverse momentum dependent parton distribution functions (TMDs) with non‐local operators in lattice QCD, using MILC∕LHPC lattices. We discuss the basic concepts of the method, including renormalization of the gauge link. Results obtained with a simplified operator geometry show visible dipole deformations of spin‐dependent quark momentum densities.United States. Dept. of Energy (grant DEFG02- 94ER40818
    • 

    corecore