4 research outputs found
Comparative thermoeconomic analyses and multi-objective particle swarm optimization of geothermal combined cooling and power systems
Comparative parametric and multi-objective optimization analyses of three novel geothermal systems are performed for combined cooling and power generation. The first (Configuration (a)) consists of an absorption power cycle and an ejector refrigeration cycle, the second (Configuration (b)) of a modified Kalina cycle and an absorption refrigeration cycle, and the third (Configuration (c)) of a double-flash power cycle and an ejector refrigeration cycle, in all cases for power generation and cooling, respectively. Both thermodynamic (energy, exergy) and economic criteria are compared to gain an understanding of the characteristics and performance of these systems, and to ascertain the most appropriate system for different scenarios. Results from the parametric study show that Configuration (a) has the highest power output and exergy efficiency, but lowest cooling capacity and overall (power plus cooling) thermal efficiency, while Configuration (b) has the highest cooling capacity and thermal efficiency, but lowest power output and exergy efficiency. From an exergoeconomic perspective, Configuration (a) has the lowest and Configuration (b) the highest total specific cost. Configuration (c) maintains, generally, a thermoeconomic performance in-between those of the other two systems. The optimization results indicate that if the thermal efficiency and total specific cost are considered competing objectives over a range of well conditions, the optimal solutions obtained by the LINMAP method for Configurations (a) to (c) have thermal efficiencies of 19.1%, 43.0%, 42.4%, exergy efficiencies of 57.6%, 23.6%, 33.1%, total cost rates of 436 /h, 596 /GJ, 66.9 /GJ. If the exergy efficiency and total cost rate are considered competing objectives, the corresponding values are 13.0%/29.1%/10.5%, 67.3%/30.5%/37.3%, 362/353/384 /GJ, respectively