124 research outputs found

    A shear cell study on oral and inhalation grade lactose powders

    Get PDF
    Abstract Shear cell tests have been conducted on twenty different lactose powders, most of which commercially available for oral or inhalation purposes, spanning a wide range of particle sizes, particle morphologies, production processes. The aims of the investigation were: i) to verify the reliability of the technique in evaluating and classifying the flowability of powders; ii) to understand the connection between the flowability of a powder and the morphological properties of its particles; iii) to find a general mathematical relationship able to predict the yield locus shape given the particle size, shape and consolidation state of a lactose powder. These aspects and their limitations are detailed in the manuscript together with other interesting findings on the stick-slip behavior observed in most of the lactose powders examined

    Weight loss predicts progression of mild cognitive impairment to Alzheimer's disease

    Get PDF
    Background Weight loss is common in people with Alzheimer's disease (AD) and it could be a marker of impending AD in Mild Cognitive Impairment (MCI) and improve prognostic accuracy, if accelerated progression to AD would be shown. Aims To assess weight loss as a predictor of dementia and AD in MCI. Methods One hundred twenty-five subjects with MCI (age 73.8 \ub1 7.1 years) were followed for an average of 4 years. Two weight measurements were carried out at a minimum time interval of one year. Dementia was defined according to DSM-IV criteria and AD according to NINCDS-ADRDA criteria. Weight loss was defined as a 654% decrease in baseline weight. Results Fifty-three (42.4%) MCI progressed to dementia, which was of the AD-type in half of the cases. Weight loss was associated with a 3.4-fold increased risk of dementia (95% CI = 1.5-6.9) and a 3.2-fold increased risk of AD (95% CI = 1.4-8.3). In terms of years lived without disease, weight loss was associated to a 2.3 and 2.5 years earlier onset of dementia and AD. Conclusions Accelerated progression towards dementia and AD is expected when weight loss is observed in MCI patients. Weight should be closely monitored in elderly with mild cognitive impairment

    Rem2-Targeted shRNAs Reduce Frequency of Miniature Excitatory Postsynaptic Currents without Altering Voltage-Gated Ca2+ Currents

    Get PDF
    Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) plays important roles in neuronal cell development and function. Rem2 is a member of the RGK (Rad, Rem, Rem2, Gem/Kir) subfamily of small GTPases that confers potent inhibition upon VGCCs. The physiologic roles of RGK proteins, particularly in the brain, are poorly understood. Rem2 was implicated in synaptogenesis through an RNAi screen and proposed to regulate Ca2+ homeostasis in neurons. To test this hypothesis and uncover physiological roles for Rem2 in the brain, we investigated the molecular mechanisms by which Rem2 knockdown affected synaptogenesis and Ca2+ homeostasis in cultured rat hippocampal neurons. Expression of a cocktail of shRNAs targeting rat Rem2 (rRem2) reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) measured 10 d after transfection (14 d in vitro), but did not affect mEPSC amplitude. VGCC current amplitude after rRem2-targeted knockdown was not different from that in control cells, however, at either 4 or 10 d post transfection. Co-expression of a human Rem2 that was insensitive to the shRNAs targeting rRem2 was unable to prevent the reduction in mEPSC frequency after rRem2-targeted knockdown. Over-expression of rRem2 resulted in 50% reduction in VGCC current, but neither the mEPSC frequency nor amplitude was affected. Taken together, the observed effects upon synaptogenesis after shRNA treatment are more likely due to mechanisms other than modulation of VGCCs and Ca2+ homeostasis, and may be independent of Rem2. In addition, our results reveal a surprising lack of contribution of VGCCs to synaptogenesis during early development in cultured hippocampal neurons
    • 

    corecore