1,953 research outputs found
Mid-Infrared Galaxy Morphology Along the Hubble Sequence
The mid-infrared emission from 18 nearby galaxies imaged with the IRAC
instrument on Spitzer Space Telescope samples the spatial distributions of the
reddening-free stellar photospheric emission and the warm dust in the ISM.
These two components provide a new framework for galaxy morphological
classification, in which the presence of spiral arms and their emission
strength relative to the starlight can be measured directly and with high
contrast. Four mid-infrared classification methods are explored, three of which
are based on quantitative global parameters (colors, bulge-to-disk ratio)
similar to those used in the past for optical studies; in this limited sample,
all correlate well with traditional B-band classification. We suggest reasons
why infrared classification may be superior to optical classification.Comment: ApJS (in press), Spitzer Space Telescope Special Issue; 13 pages,
LaTeX (or Latex, etc); Figure 1ab is large, color plate; full-resolution
plates in .pdf format available at
http://cfa-www.harvard.edu/irac/publications
Spitzer Mid-Infrared Imaging of Nearby Ultraluminous Infrared Galaxies
We have observed 14 nearby (z<0.16) Ultraluminous Infrared Galaxies (ULIRGs)
with Spitzer at 3.6-24 microns. The underlying host galaxies are well-detected,
in addition to the luminous nuclear cores. While the spatial resolution of
Spitzer is poor, the great sensitivity of the data reveals the underlying
galaxy merger remnant, and provides the first look at off-nuclear mid-infrared
activity.Comment: To appear in the conference proceedings for Spitzer New Views of the
Universe, held Nov. 2004 in Pasadena, C
Spitzer/IRAC Observations of the Variability of Sgr A* and the Object G2 at 4.5 microns
We present the first detection from the Spitzer Space Telescope of 4.5 micron
variability from Sgr A*, the emitting source associated with the Milky Way's
central black hole. The >23 hour continuous light curve was obtained with the
IRAC instrument in 2013 December. The result characterizes the variability of
Sgr A* prior to the closest approach of the G2 object, a putative infalling gas
cloud that orbits close to Sgr A*. The high stellar density at the location of
Sgr A* produces a background of ~250 mJy at 4.5 microns in each pixel with a
large pixel-to-pixel gradient, but the light curve for the highly variable Sgr
A* source was successfully measured by modeling and removing the variations due
to pointing wobble. The observed flux densities range from the noise level of
~0.7 mJy rms in a 6.4-s measurement to ~10 mJy. Emission was seen above the
noise level ~34% of the time. The light curve characteristics, including the
flux density distribution and structure function, are consistent with those
previously derived at shorter infrared wavelengths. We see no evidence in the
light curve for activity attributable to the G2 interaction at the observing
epoch, ~100 days before the expected G2 periapsis passage. The IRAC light curve
is more than a factor of two longer than any previous infrared observation,
improving constraints on the timescale of the break in the power spectral
distribution of Sgr A* flux densities. The data favor the longer of the two
previously published values for the timescale.Comment: 13 pages, 10 figures, 2 tables, accepted for publication in the Ap
Coherent electronic and nuclear dynamics in a rhodamine heterodimer-DNA supramolecular complex
Elucidating the role of quantum coherences in energy migration within biological and artificial multichromophoric antenna systems is the subject of an intense debate. It is also a practical matter because of the decisive implications for understanding the biological processes and engineering artificial materials for solar energy harvesting. A supramolecular rhodamine heterodimer on a DNA scaffold was suitably engineered to mimic the basic donor-acceptor unit of light-harvesting antennas. Ultrafast 2D electronic spectroscopic measurements allowed identifying clear features attributable to a coherent superposition of dimer electronic and vibrational states contributing to the coherent electronic charge beating between the donor and the acceptor. The frequency of electronic charge beating is found to be 970 cm-1 (34 fs) and can be observed for 150 fs. Through the support of high level ab initio TD-DFT computations of the entire dimer, we established that the vibrational modes preferentially optically accessed do not drive subsequent coupling between the electronic states on the 600 fs of the experiment. It was thereby possible to characterize the time scales of the early time femtosecond dynamics of the electronic coherence built by the optical excitation in a large rigid supramolecular system at a room temperature in solution. © 2017 the Owner Societies.Multi valued and parallel molecular logi
Wide complex tachycardia in an elderly woman due to Ebstein\u27s anomaly with two accessory pathways
High-precision Photometric Redshifts from Spitzer/IRAC: Extreme [3.6]-[4.5] Colors Identify Galaxies in the Redshift Range z~6.6-6.9
One of the most challenging aspects of studying galaxies in the z>~7 universe
is the infrequent confirmation of their redshifts through spectroscopy, a
phenomenon thought to occur from the increasing opacity of the intergalactic
medium to Lya photons at z>6.5. The resulting redshift uncertainties inhibit
the efficient search for [C II] in z~7 galaxies with sub-mm instruments such as
ALMA, given their limited scan speed for faint lines. One means by which to
improve the precision of the inferred redshifts is to exploit the potential
impact of strong nebular emission lines on the colors of z~4-8 galaxies as
observed by Spitzer/IRAC. At z~6.8, galaxies exhibit IRAC colors as blue as
[3.6]-[4.5] ~-1, likely due to the contribution of [O III]+Hb to the 3.6 mum
flux combined with the absence of line contamination in the 4.5 mum band. In
this paper we explore the use of extremely blue [3.6]-[4.5] colors to identify
galaxies in the narrow redshift window z~6.6-6.9. When combined with an
I-dropout criterion, we demonstrate that we can plausibly select a relatively
clean sample of z~6.8 galaxies. Through a systematic application of this
selection technique to our catalogs from all five CANDELS fields, we identify
20 probable z~6.6-6.9 galaxies. We estimate that our criteria select the ~50%
strongest line emitters at z~6.8 and from the IRAC colors we estimate a typical
[O III]+Hb rest-frame equivalent width of 1085A for this sample. The small
redshift uncertainties on our sample make it particularly well suited for
follow-up studies with facilities such as ALMA.Comment: In submission to the Astrophysical Journal, updated in response to
the referee report, 13 pages, 11 figures, 1 tabl
S-CANDELS: The Spitzer-Cosmic Assembly Near-Infrared Deep Extragalactic Survey. Survey Design, Photometry, and Deep IRAC Source Counts
The Spitzer-Cosmic Assembly Deep Near-Infrared Extragalactic Legacy Survey
(S-CANDELS; PI G. Fazio) is a Cycle 8 Exploration Program designed to detect
galaxies at very high redshifts (z > 5). To mitigate the effects of cosmic
variance and also to take advantage of deep coextensive coverage in multiple
bands by the Hubble Space Telescope Multi-Cycle Treasury Program CANDELS,
S-CANDELS was carried out within five widely separated extragalactic fields:
the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS,
the HST Deep Field North, and the Extended Groth Strip. S-CANDELS builds upon
the existing coverage of these fields from the Spitzer Extended Deep Survey
(SEDS) by increasing the integration time from 12 hours to a total of 50 hours
but within a smaller area, 0.16 square degrees. The additional depth
significantly increases the survey completeness at faint magnitudes. This paper
describes the S-CANDELS survey design, processing, and publicly-available data
products. We present IRAC dual-band 3.6+4.5 micron catalogs reaching to a depth
of 26.5 AB mag. Deep IRAC counts for the roughly 135,000 galaxies detected by
S-CANDELS are consistent with models based on known galaxy populations. The
increase in depth beyond earlier Spitzer/IRAC surveys does not reveal a
significant additional contribution from discrete sources to the diffuse Cosmic
Infrared Background (CIB). Thus it remains true that only roughly half of the
estimated CIB flux from COBE/DIRBE is resolved.Comment: 23 pages, 19 figures, accepted by ApJ
- …