65 research outputs found

    Phylogeography and population history of the least weasel (Mustela nivalis) in the Palearctic based on multilocus analysis

    Full text link
    The least weasel (Mustela nivalis) is one of the most widely distributed carnivorans. While previous studies have identified distinct western and eastern mitochondrial DNA (mtDNA) lineages of the species in the western Palearctic, their broader distributions across the Palearctic have remained unknown. To address the broad-scale phylogeographical structure, we expanded the sampling to populations in Eastern Europe, the Urals, the Russian Far East, and Japan, and analyzed the mtDNA control region and cytochrome b, the final intron of the zinc finger protein on Y chromosome (ZFY), and the autosomal agouti signaling protein gene (ASIP). The mtDNA data analysis exposed the previous western lineage (Clade I) but poorly supported assemblage extending across Palearctic, whereas the previous eastern lineage (Clade II) was reconfirmed and limited in the south western part of the Palearctic. The ZFY phylogeny showed a distinctive split that corresponding to the mtDNA lineage split, although less phylogeographical structure was seen in the ASIP variation. Our data concur with the previous inference of the Black Sea–Caspian Sea area having an ancestral character. The Urals region harbored high mitochondrial diversity, with an estimated coalescent time of around 100,000 years, suggesting this could have been a cryptic refugium. Based on the coalescent-based demographic reconstructions, the expansion of Clade I across the Palearctic was remarkably rapid, while Clade II was relatively stable for a longer time. It seems that Clade II has maintained a constant population size in the temperate region, and the expansive Clade I represents adaptation to the cold regions. © 2019 Blackwell Verlag GmbHJapan Society for the Promotion of Science, JSPSRussian Foundation for Basic Research, RFBRJapan Society for the Promotion of Science, JSPSAAAA‐A17‐117022810195‐3We would like to thank T. Saitoh, Y. Masuda, H. Yanagawa, F. Sekiyama, M. Takahashi, M. Hisasue, the Finnish Museum of Natural History, and the Museum at the Institute of Plant and Animal Ecology (Ural Branch of the Russian Academy of Sciences) for providing samples, and Y. Nishita for suggestions. This study was supported in part by Joint Research Project Grants from the Japan Society of the Promotion of Science (JSPS) and the Russian Foundation for Basic Research, Russian State program AAAA‐A17‐117022810195‐3, and a grant from the Joint Research Program of the Japan Arctic Research Network Center

    INFORMATIVE CAPACITY OF THE SARGAT CULTURE’S DISTURBED BURIALS: KURGAN NOVOPOKROVKA 16 IN THE MIDDLE IRTYSH RIVER BASIN 1

    Get PDF
    The article deals with a complex study of the materials obtained during archaeological excavation of the kurgan Novopokrovka 16 in the middle Irtysh river basin (Omsk region). The site, which is attributed to the Sargat culture (5th century BC – second half of the 3rd centuryAD), was located farmost on the right bank of the river Irtysh, nearby the group of “Princely kurgans”. Despite almost total disturbance by robbers and agricultural activity, common scholars’ efforts demonstrate high informative capacity of the multidisciplinary approach, while modern level of undertaken research is not just being declared but enables to reconstruct seemingly lost information. The kurgan erection stages and mound structure features have been decoded using the results of a geophysical survey and soil morphology data. The paleoanthropological study of the incomplete skeletal remains does not support multiple or inlet interment inside the central grave, and provides sexing and aging of the buried individuals as well as some paleopathological observations. Apart from species examination, archaeozoological data testify that a warm period from spring to early autumn was the season of animal slaughter. Characteristics of mortuary rituals and direction of intercultural contacts of the ancient forest-steppe groups have been completed by new details based on the results of strontium isotope analyses (dental enamel of humans and animals) and evidence non-local origin of the individual buried under the excavated kurgan, what is different from local origin of horses butchered for funereal feasts. The proposed hypothesis supports previously suggested archaeological, paleoanthropological and paleogenetic facts on the origin of the forest-steppe population, indicating an involvement of various population groups with notable external components. Based on the archaeological materials, the kurgan under study might be dated back to mid-4th – 3rd centuries BC. © 2023 The Author(s).Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-15-2021-680The article was prepared in the framework of the state orders No. 121102500121-8, 123011800012-9, 1021061810416-7, АААА-А19-119013090163-2, RFBR grant No. 21-59-23003. Sr isotopic analyses were obtained in the Geoanalitik shared research facilities of the IGG UB RAS, whose re-equipment and comprehensive development is supported by a grant of the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2021-680)

    Population dynamics and range shifts of moose (Alces alces) during the Late Quaternary

    Full text link
    Aim: Late Quaternary climate oscillations had major impacts on species distributions and abundances across the northern Holarctic. While many large mammals in this region went extinct towards the end of the Quaternary, some species survived and flourished. Here, we examine population dynamics and range shifts of one of the most widely distributed of these, the moose (Alces alces). Location: Northern Holarctic. Taxon: Moose (A. alces). Methods: We collected samples of modern and ancient moose from across their present and former range. We assessed their phylogeographical relations using part of the mitochondrial DNA in conjunction with radiocarbon dating to investigate the history of A. alces during the last glacial. Results: This species has a relatively shallow history, with the most recent common ancestor estimated at ca. 150–50 kyr. Ancient samples corroborate that its region of greatest diversity is in east Asia, supporting proposals that this is the region of origin of all extant moose. Both eastern and western haplogroups occur in the Ural Mountains during the last glacial period, implying a broader contact zone than previously proposed. It seems that this species went extinct over much of its northern range during the last glacial maximum (LGM) and recolonized the region with climate warming beginning around 15,000 yr bp. The post-LGM expansion included a movement from northeast Siberia to North America via Beringia, although the northeast Siberian source population is not the one currently occupying that area. Main conclusions: Moose are a relatively recently evolved species but have had a dynamic history. As a large-bodied subarctic browsing species, they were seemingly confined to refugia during full-glacial periods and expanded their range northwards when the boreal forest returned after the LGM. The main modern phylogeographical division is ancient, though its boundary has not remained constant. Moose population expansion into America was roughly synchronous with human and red deer expansion. © 2020 The Authors. Journal of Biogeography published by John Wiley & Sons LtdWe warmly thank the following museums, curators and people for access to samples: the late Andrei Sher, Severtsov Institute, Moscow; Andy Currant, Natural History Museum, London; Alfred Gardner, Smithsonian, Washington DC; R. Dale Guthrie, University of Alaska, Fairbanks; John de Vos, National Museum of Natural History (Naturalis), Leiden; Eileen Westwig, American Museum of Natural History, NY; Fyodor Shidlovsky, Ice-Age Museum, Moscow; Tong Haowen, Institute of Vertebrate Palaeontology and Paleoanthropology, Beijing; Mammoth Museum, Yakutsk; Geological Museum, Yakutsk; Paleontological Institute, Moscow; Royal Alberta Museum, Edmonton; Zoological Institute, Saint Petersburg; Museum of the Institute of Plant and Animal Ecology, Ekaterinburg. We thank our Yukon First Nation research partners for their continued support for our work on the ice age fossils of Yukon Territory. We are grateful to the placer gold mining community and the Tr'ond?k Hw?ch'in First Nation for their continued support and partnership with our research in the Klondike goldfields region; and the Vuntut Gwitchin First Nation for their collaboration with research in the Old Crow region. We would also like to thank Shai Meiri for help in drawing the map and useful discussion, Tony Stuart for access to radiocarbon dates, and Iris van Pijlen for laboratory assistance. This research was funded by NERC grant NE/G00269X/1 through the European Union FP7 ERA-NET program BiodivERsA. Funding for AMS dating was provided through NERC/AHRC/ORAU Grant NF/2008/2/15

    Conservation implications of elucidating the Korean wolf taxonomic ambiguity through whole-genome sequencing

    Get PDF
    The taxonomic status of the now likely extirpated Korean Peninsula wolf has been extensively debated, with some arguing it represents an independent wolf lineage, Canis coreanus. To investigate the Korean wolf's genetic affiliations and taxonomic status, we sequenced and analysed the genomes of a Korean wolf dated to the beginning of the 20th century, and a captive wolf originally from the Pyongyang Central Zoo. Our results indicated that the Korean wolf bears similar genetic ancestry to other regional East Asian populations, therefore suggesting it is not a distinct taxonomic lineage. We identified regional patterns of wolf population structure and admixture in East Asia with potential conservation consequences in the Korean Peninsula and on a regional scale. We find that the Korean wolf has similar genomic diversity and inbreeding to other East Asian wolves. Finally, we show that, in contrast to the historical sample, the captive wolf is genetically more similar to wolves from the Tibetan Plateau; hence, Korean wolf conservation programmes might not benefit from the inclusion of this specimen. © 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.European Research Council, ERC: 681396; Consejo Nacional de Ciencia y Tecnología, CONACYT; Miljødirektoratet: 18088069This work was supported by ERC Consolidator Award 681396 Extinction Genomics, DNRF143 Center for Evolutionary Hologenomics, and the Norwegian Environment Agency (project 18088069). G.H-A. is supported by the Consejo Nacional de Ciencia y Tecnología from Mexico (CONACyT, 576743). Morten Skage, Mikeal Åkersson, Jouni Aspi, Kjetill S. Jakobsen, and Øyvind Øverli provided some of the wolf samples included in this study. We would like to acknowledge Zoo Zürich for providing the study with a sample from their Mongolian wolf.This work was supported by ERC Consolidator Award 681396 Extinction Genomics, DNRF143 Center for Evolutionary Hologenomics, and the Norwegian Environment Agency (project 18088069). G.H‐A. is supported by the Consejo Nacional de Ciencia y Tecnología from Mexico (CONACyT, 576743). Morten Skage, Mikeal Åkersson, Jouni Aspi, Kjetill S. Jakobsen, and Øyvind Øverli provided some of the wolf samples included in this study. We would like to acknowledge Zoo Zürich for providing the study with a sample from their Mongolian wolf

    Heavy reliance on plants for Romanian cave bears evidenced by amino acid nitrogen isotope analysis

    Get PDF
    Heavy reliance on plants is rare in Carnivora and mostly limited to relatively small species in subtropical settings. The feeding behaviors of extinct cave bears living during Pleistocene cold periods at middle latitudes have been intensely studied using various approaches including isotopic analyses of fossil collagen. In contrast to cave bears from all other regions in Europe, some individuals from Romania show exceptionally high δ15N values that might be indicative of meat consumption. Herbivory on plants with high δ15N values cannot be ruled out based on this method, however. Here we apply an approach using the δ15N values of individual amino acids from collagen that offsets the baseline δ15N variation among environments. The analysis yielded strong signals of reliance on plants for Romanian cave bears based on the δ15N values of glutamate and phenylalanine. These results could suggest that the high variability in bulk collagen δ15N values observed among cave bears in Romania reflects niche partitioning but in a general trophic context of herbivory

    Winter Temperature and Forest Cover Have Shaped Red Deer Distribution in Europe and the Ural Mountains Since the Late Pleistocene

    Full text link
    Aim: The Expansion-Contraction model has been used to explain the responses of species to climatic changes. During periods of unfavourable climatic conditions, species retreat to refugia from where they may later expand. This paper focuses on the palaeoecology of red deer over the past 54 ka across Europe and the Urals, to reveal patterns of change in their range and explore the role of environmental conditions in determining their distribution. Location: Europe and western Asia to 63°E. Taxon: Red deer (Cervus elaphus). Methods: We collected 984 records of radiocarbon-dated red deer subfossils from the Late Pleistocene and the Holocene, including 93 original dates. For each deer sample we compiled climatic and biome type data for the corresponding time intervals. Results: During the last 54 ka changes in red deer range in Europe and the Urals were asynchronous and differed between western and eastern Europe and western Asia due to different environmental conditions in those regions. The range of suitable areas for deer during the Last Glacial Maximum (LGM) was larger than previously thought and covered vast regions not only in southern but also in western and eastern Europe. Throughout the period investigated the majority of specimens inhabited forests in the temperate climatic zone. The contribution of forests in deer localities significantly decreased during the last 4 ka, due to deforestation of Europe caused by humans. Mean January temperature was the main limiting factor for species distribution. Over 90% of the samples were found in areas where mean January temperature was above −10°C. Main conclusions: Red deer response to climatic oscillations are in agreement with the Expansion-Contraction model but in contradiction to the statement of only the southernmost LGM refugia of the species. During the last 54 ka red deer occurred mostly in forests of the temperate climatic zone. © 2020 John Wiley & Sons Ltd.European Social Fund, Grant/Award Number: UDA-POKL.04.01.01-00-072/09-00; University of Wroclaw, Grant/Award Number: 0410/2990/18; Institute of Environmental Biology, University of Wrocław, Grant/Award Number: 0410/2990/18; Mammal Research Institute Polish Academy of Sciences; Narodowe Centrum Nauki , Grant/Award Number: DEC-2013/11/B/NZ8/00888 and UMO-2016/23/B/HS3/00387; Romanian National Authority for Scientific Research, UEFISCDI, Grant/Award Number: PN-IIIP4-ID-PCE-2016-0676; National Centre for Atmospheric Science and the Centre for Environmental Data Analysis, UK; Faunal Database of the Stage Three Project; Leverhulme Trust, Grant/Award Number: F00568W

    Winter temperature and forest cover have shaped red deer distribution in Europe and the Ural Mountains since the Late Pleistocene

    Get PDF
    Aim: The Expansion-Contraction model has been used to explain the responses of species to climatic changes. During periods of unfavourable climatic conditions, species retreat to refugia from where they may later expand. This paper focuses on the palaeoecology of red deer over the past 54 ka across Europe and the Urals, to reveal patterns of change in their range and explore the role of environmental conditions in determining their distribution. Location: Europe and western Asia to 63°E. Taxon: Red deer (Cervus elaphus). Methods: We collected 984 records of radiocarbon-dated red deer subfossils from the Late Pleistocene and the Holocene, including 93 original dates. For each deer sample we compiled climatic and biome type data for the corresponding time intervals. Results: During the last 54 ka changes in red deer range in Europe and the Urals were asynchronous and differed between western and eastern Europe and western Asia due to different environmental conditions in those regions. The range of suitable areas for deer during the Last Glacial Maximum (LGM) was larger than previously thought and covered vast regions not only in southern but also in western and eastern Europe. Throughout the period investigated the majority of specimens inhabited forests in the temperate climatic zone. The contribution of forests in deer localities significantly decreased during the last 4 ka, due to deforestation of Europe caused by humans. Mean January temperature was the main limiting factor for species distribution. Over 90% of the samples were found in areas where mean January temperature was above −10°C. Main conclusions: Red deer response to climatic oscillations are in agreement with the Expansion-Contraction model but in contradiction to the statement of only the southernmost LGM refugia of the species. During the last 54 ka red deer occurred mostly in forests of the temperate climatic zone. © 2020 John Wiley & Sons Ltd.European Social Fund, Grant/Award Number: UDA-POKL.04.01.01-00-072/09-00; University of Wroclaw, Grant/Award Number: 0410/2990/18; Institute of Environmental Biology, University of Wrocław, Grant/Award Number: 0410/2990/18; Mammal Research Institute Polish Academy of Sciences; Narodowe Centrum Nauki , Grant/Award Number: DEC-2013/11/B/NZ8/00888 and UMO-2016/23/B/HS3/00387; Romanian National Authority for Scientific Research, UEFISCDI, Grant/Award Number: PN-IIIP4-ID-PCE-2016-0676; National Centre for Atmospheric Science and the Centre for Environmental Data Analysis, UK; Faunal Database of the Stage Three Project; Leverhulme Trust, Grant/Award Number: F00568W

    Population genomics of post-glacial western Eurasia.

    Get PDF
    Western Eurasia witnessed several large-scale human migrations during the Holocene <sup>1-5</sup> . Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations

    Publisher Correction: Population genomics of post-glacial western Eurasia.

    Get PDF
    corecore