264 research outputs found

    The Band-Gap Problem in Semiconductors Revisited: Effects of Core States and Many-Body Self-Consistency

    Full text link
    A novel picture of the quasiparticle (QP) gap in prototype semiconductors Si and Ge emerges from an analysis based on all-electron, self-consistent, GW calculations. The deep-core electrons are shown to play a key role via the exchange diagram --if this effect is neglected, Si becomes a semimetal. Contrary to current lore, the Ge 3d semicore states (e.g., their polarization) have no impact on the GW gap. Self-consistency improves the calculated gaps --a first clear-cut success story for the Baym-Kadanoff method in the study of real-materials spectroscopy; it also has a significant impact on the QP lifetimes. Our results embody a new paradigm for ab initio QP theory

    Collisionless hydrodynamics for 1D motion of inhomogeneous degenerate electron gases: equivalence of two recent descriptions

    Full text link
    Recently I. Tokatly and O. Pankratov (''TP'', Phys. Rev. B 60, 15550 (1999)) used velocity moments of a semiclassical kinetic equation to derive a hydrodynamic description of electron motion in a degenerate electron gas. Independently, the present authors (Theochem 501-502, 327 (2000)) used considerations arising from the Harmonic Potential Theorem (Phys. Rev. Lett. 73, 2244 (1994)) to generate a new form of high-frequency hydrodynamics for inhomogeneous degenerate electron gases (HPT-N3 hydrodynamics). We show here that TP hydrodynamics yields HPT-N3 hydrodynamics when linearized about a Thomas-Fermi groundstate with one-dimensional spatial inhomnogeneity.Comment: 17p

    Hydrodynamic theory of an electron gas

    Full text link
    The generalised hydrodynamic theory of an electron gas, which does not rely on an assumption of a local equilibrium, is derived as the long-wave limit of a kinetic equation. Apart from the common hydrodynamics variables the theory includes the tensor fields of the higher moments of the distribution function. In contrast to the Bloch hydrodynamics, the theory leads to the correct plasmon dispersion and in the low frequency limit recovers the Navies-Stocks hydrodynamics. The linear approximation to the generalised hydrodynamics is closely related to the theory of highly viscous fluids.Comment: 4 pages, revte

    Edge Electron Gas

    Full text link
    The uniform electron gas, the traditional starting point for density-based many-body theories of inhomogeneous systems, is inappropriate near electronic edges. In its place we put forward the appropriate concept of the edge electron gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in title,text and figure

    Dynamic image potential at an Al(111) surface

    Get PDF
    We evaluate the electronic self-energy Sigma(E) at an Al(111) surface using the GW space-time method. This self-energy automatically includes the image potential V-im not present in any local-density approximation for exchange and correlation. We solve the energy-dependent quasiparticle equations and calculate the effective local potential experienced by electrons in the near-surface region. The relative contribution of exchange proves to be very different for states above the Fermi level. The image-plane position for interacting electrons is closer to the surface than for the purely electrostatic effects felt by test charges, and, like its classical counterpart, is drawn inwards by the effects of atomic structure

    Electron-hole and plasmon excitations in 3d transition metals: Ab initio calculations and inelastic x-ray scattering measurements

    Full text link
    We report extensive all-electron time-dependent density-functional calculations and nonresonant inelastic x-ray scattering measurements of the dynamical structure factor of 3d transition metals. For small wave vectors, a plasmon peak is observed which is well described by our calculations. At large wave vectors, both theory and experiment exhibit characteristic low-energy electron-hole excitations of d character which correlate with the presence of d bands below and above the Fermi level. Our calculations, which have been carried out in the random-phase and adiabatic local-density approximations, are found to be in remarkable agreement with the measured dynamical structure factor of Sc and Cr at energies below the semicore onset energy (M-edge) of these materials.Comment: To appear in Phys. Rev.
    corecore