176 research outputs found

    Vitamin C inhibits endothelial cell apoptosis in congestive heart failure

    Get PDF
    Background - Proinflammatory cytokines like tumor necrosis factor- and oxidative stress induce apoptotic cell death in endothelial cells (ECs). Systemic inflammation and increased oxidative stress in congestive heart failure (CHF) coincide with enhanced EC apoptosis and the development of endothelial dysfunction. Therefore, we investigated the effects of antioxidative vitamin C therapy on EC apoptosis in CHF patients. Methods and Results - Vitamin C dose dependently suppressed the induction of EC apoptosis by tumor necrosis factor- and angiotensin II in vitro as assessed by DNA fragmentation, DAPI nuclear staining, and MTT viability assay. The antiapoptotic effect of vitamin C was associated with reduced cytochrome C release from mitochondria and the inhibition of caspase-9 activity. To assess EC protection by vitamin C in CHF patients, we prospectively randomized CHF patients in a double-blind trial to vitamin C treatment versus placebo. Vitamin C administration to CHF patients markedly reduced plasma levels of circulating apoptotic microparticles to 32±8% of baseline levels, whereas placebo had no effect (87±14%, P<0.005). In addition, vitamin C administration suppressed the proapoptotic activity on EC of the serum of CHF patients (P<0.001). Conclusions - Administration of vitamin C to CHF patients suppresses EC apoptosis in vivo, which might contribute to the established functional benefit of vitamin C supplementation on endothelial function

    Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes

    Get PDF
    Introduction: In recent years, there has been an exponential increase in the number of studies aiming to understand the biology of exosomes, as well as other extracellular vesicles. However, classification of membrane vesicles and the appropriate protocols for their isolation are still under intense discussion and investigation. When isolating vesicles, it is crucial to use systems that are able to separate them, to avoid cross-contamination. Method: EVs released from three different kinds of cell lines: HMC-1, TF-1 and BV-2 were isolated using two centrifugation-based protocols. In protocol 1, apoptotic bodies were collected at 2,000&#x00D7;g, followed by filtering the supernatant through 0.8 &#x00B5;m pores and pelleting of microvesicles at 12,200&#x00D7;g. In protocol 2, apoptotic bodies and microvesicles were collected together at 16,500&#x00D7;g, followed by filtering of the supernatant through 0.2 &#x00B5;m pores and pelleting of exosomes at 120,000&#x00D7;g. Extracellular vesicles were analyzed by transmission electron microscopy, flow cytometry and the RNA profiles were investigated using a Bioanalyzer&#x00AE;. Results: RNA profiles showed that ribosomal RNA was primary detectable in apoptotic bodies and smaller RNAs without prominent ribosomal RNA peaks in exosomes. In contrast, microvesicles contained little or no RNA except for microvesicles collected from TF-1 cell cultures. The different vesicle pellets showed highly different distribution of size, shape and electron density with typical apoptotic body, microvesicle and exosome characteristics when analyzed by transmission electron microscopy. Flow cytometry revealed the presence of CD63 and CD81 in all vesicles investigated, as well as CD9 except in the TF-1-derived vesicles, as these cells do not express CD9. Conclusions: Our results demonstrate that centrifugation-based protocols are simple and fast systems to distinguish subpopulations of extracellular vesicles. Different vesicles show different RNA profiles and morphological characteristics, but they are indistinguishable using CD63-coated beads for flow cytometry analysis

    Stability of the thrombin-thrombomodulin complex on the surface of endothelial cells from human saphenous vein or from the cell line EA.hy 926

    Get PDF
    Protein C activation by alpha-thrombin on the surface of endothelial cells depends on an essential membrane-glycoprotein cofactor, thrombomodulin. In the present study we have monitored the activity of thrombin-thrombomodulin complexes on human saphenous-vein endothelial cells (HSVEC) or on the endothelial cell line EA.hy 926. Cell monolayers were exposed for 5 min to 8.5 nM human alpha-thrombin and then washed to remove unbound thrombin. The cells were then incubated at 37 degrees C for 5-180 min. At the end of the respective incubation periods, purified human protein C (120 nM) was added in order to assay the activity of the thrombin-thrombomodulin complexes present on the cell surface. HSVEC pre-exposed to thrombin retained their full capacity to promote protein C activation up to 90 min after free thrombin was removed. This capacity then decreased slowly to reach 56% of control value after 180 min of incubation. Original activity was 3.8 +/- 0.9 pmol of activated protein C formed/min per ml per 10(6) cells (mean +/- S.E.M., n = 5). The capacity of protein C activation of EA.hy 926 cells remained constant for 120 min after free thrombin was removed, then decreased to 76% of control after 180 min. Original activity was 2.0 +/- 0.4 pmol of activated protein C formed/min per ml per 10(6) cells (mean +/- S.E.M., n = 3). Similar results were obtained with cells fixed with 3% paraformaldehyde. However, during the 5-180 min incubation period, non-fixed cells of both types were capable of significantly internalizing fluorescent acetylated low-density lipoprotein. In the experimental protocol used here, an eventual inhibition of thrombin internalization by protein C can be excluded, as protein C is only added at the end of the incubation period. We conclude that there is no evidence of rapid internalization of thrombin-thrombomodulin complexes on HSVEC or the EA.hy 926 cell line, as assessed by the ability of membrane-bound thrombin to activate protein C

    Circulating Secretory Phospholipase A2 Activity Predicts Recurrent Events in Patients With Severe Acute Coronary Syndromes

    Get PDF
    ObjectivesThe purpose of this study was to determine the prognostic value of circulating secretory phospholipase A2 (sPLA2) activity in patients with acute coronary syndromes (ACS).BackgroundThe plasma level of type IIA sPLA2 is a risk factor for coronary artery disease (CAD) and is associated with adverse outcomes in patients with stable CAD. The prognostic impact of sPLA2 in patients with ACS is unknown.MethodsSecretory phospholipase A2 antigen levels and activity were measured in plasma samples of 446 patients with ACS, obtained at the time of enrollment.ResultsBaseline sPLA2 activity was associated with the risk of death and myocardial infarction (MI). The unadjusted rate of death and MI increased in a stepwise fashion with increasing tertiles of sPLA2 activity (p < 0.0001). The association remained significant in the subgroup of patients who had MI with ST-segment elevation (p = 0.014) and the subgroup of patients who had unstable angina or non–ST-segment elevation MI (p < 0.002). After adjustment for clinical and biological variables, the hazard ratios for the combined end point of death or MI in the third tertile of sPLA2 compared with the first and second tertiles was 3.08 (95% confidence interval, 1.37 to 6.91, p = 0.006).ConclusionsA single measurement of plasma sPLA2 activity at the time of enrollment provides strong independent information to predict recurrent events in patients with ACS

    Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy

    Get PDF
    PURPOSE: Septic shock-induced disseminated intravascular coagulopathy (DIC) contributes to multiple organ failure. Mechanisms governing vascular responses to open occurrence of DIC have not yet been established. Circulating plasma microparticles (MPs), released upon cell stress, constitute a catalytic procoagulant surface and are surrogates of vascular cell activation/injury. Herein, MPs were assessed as possible markers of haemostatic and vascular dysfunction in the DIC time course. METHODS: One hundred patients with septic shock from three ICUs were enrolled and their haemostatic status evaluated at admission (D1), D2, D3 and D7. Circulating procoagulant MPs were isolated, quantified by prothrombinase assay and their cellular origin determined. DIC diagnosis was made according to the JAAM 2006 score. RESULTS: Ninety-two patients were analysed and 40 had DIC during the first 24 h. Routine clotting times and factor/inhibitor activity did not allow assessing vascular cell involvement. At admission, thrombin generation and fibrinolysis were observed in both groups while impaired fibrin polymerisation was evidenced only in DIC patients. Sustained thrombin generation persisted over time in both groups at D7. While total microparticle concentrations were in the same range regardless of DIC diagnosis, specific phenotypes were already detected at admission in DIC patients. Endothelial- and leucocyte-derived MPs were higher in DIC while an increased soluble glycoprotein V/platelet ratio was delayed, underscoring the first involvement of endothelial cells and leucocytes whereas platelet activation was delayed. Endothelium-derived CD105-MPs (OR 6.55) and CD31-MPs (OR 0.49) were strongly associated with early DIC in multivariate analysis. CONCLUSION: Endothelial-derived microparticles are relevant biomarkers of septic shock-induced DIC and could be used to evaluate early vascular injury
    corecore