869 research outputs found

    Travelling Together: A Unifying Pathomechanism for ALS

    Get PDF
    Axonal transport is critical for neuronal homeostasis and relies on motor complexes bound to cargoes via specific adaptors. However, the mechanisms responsible for the spatiotemporal regulation of axonal transport are not completely understood. A recent study by Liao et al. contributes to filling this gap by reporting that RNA granules ‘hitchhike’ on LAMP1-positive organelles using annexin A11 as a tether

    The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis

    Get PDF
    Dysregulated RNA metabolism is emerging as a crucially important mechanism underpinning the pathogenesis of frontotemporal dementia (FTD) and the clinically, genetically and pathologically overlapping disorder of amyotrophic lateral sclerosis (ALS). Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RNA-binding proteins with diverse, multi-functional roles across all aspects of mRNA processing. The role of these proteins in neurodegeneration is far from understood. Here, we review some of the unifying mechanisms by which hnRNPs have been directly or indirectly linked with FTD/ALS pathogenesis, including their incorporation into pathological inclusions and their best-known roles in pre-mRNA splicing regulation. We also discuss the broader functionalities of hnRNPs including their roles in cryptic exon repression, stress granule assembly and in co-ordinating the DNA damage response, which are all emerging pathogenic themes in both diseases. We then present an integrated model that depicts how a broad-ranging network of pathogenic events can arise from declining levels of functional hnRNPs that are inadequately compensated for by autoregulatory means. Finally, we provide a comprehensive overview of the most functionally relevant cellular roles, in the context of FTD/ALS pathogenesis, for hnRNPs A1-U

    Landau-de Gennes Corrections to the Oseen-Frank Theory of Nematic Liquid Crystals

    Get PDF
    We study the asymptotic behavior of the minimisers of the Landau-de Gennes model for nematic liquid crystals in a two-dimensional domain in the regime of small elastic constant. At leading order in the elasticity constant, the minimum-energy configurations can be described by the simpler Oseen-Frank theory. Using a refined notion of Γ-development we recover Landau-de Gennes corrections to the Oseen-Frank energy. We provide an explicit characterisation of minimizing Q-tensors at this order in terms of optimal Oseen-Frank directors and observe the emerging biaxiality. We apply our results to distinguish between optimal configurations in the class of conformal director fields of fixed topological degree saturating the lower bound for the Oseen-Frank energy

    Disease mechanism, biomarker and therapeutics for spinal and bulbar muscular atrophy (SBMA)

    Get PDF
    Spinal and bulbar muscular atrophy (SBMA) is a hereditary neuromuscular disorder caused by CAG trinucleotide expansion in the gene encoding the androgen receptor (AR). In the central nervous system, lower motor neurons are selectively affected, whereas pathology of patients and animal models also indicates involvement of skeletal muscle including loss of fast-twitch type 2 fibres and increased slow-twitch type 1 fibres, together with a glycolytic-to-oxidative metabolic switch. Evaluation of muscle and fat using MRI, in addition to biochemical indices such as serum creatinine level, are promising biomarkers to track the disease progression. The serum level of creatinine starts to decrease before the onset of muscle weakness, followed by the emergence of hand tremor, a prodromal sign of the disease. Androgen-dependent nuclear accumulation of the polyglutamine-expanded AR is an essential step in the pathogenesis, providing therapeutic opportunities via hormonal manipulation and gene silencing with antisense oligonucleotides. Animal studies also suggest that hyperactivation of Src, alteration of autophagy and a mitochondrial deficit underlie the neuromuscular degeneration in SBMA and provide alternative therapeutic targets

    Half-Integer Point Defects in the Q-Tensor Theory of Nematic Liquid Crystals

    Get PDF
    We investigate prototypical profiles of point defects in two dimensional liquid crystals within the framework of Landau-de Gennes theory. Using boundary conditions characteristic of defects of index k/2k/2, we find a critical point of the Landau-de Gennes energy that is characterised by a system of ordinary differential equations. In the deep nematic regime, b2b^2 small, we prove that this critical point is the unique global minimiser of the Landau-de Gennes energy. We investigate in greater detail the regime of vanishing elastic constant L→0L \to 0, where we obtain three explicit point defect profiles, including the global minimiser.Comment: 15 pages, 16 figure

    A note on boundedness of operators in Grand Grand Morrey spaces

    Full text link
    In this note we introduce grand grand Morrey spaces, in the spirit of the grand Lebesgue spaces. We prove a kind of \textit{reduction lemma} which is applicable to a variety of operators to reduce their boundedness in grand grand Morrey spaces to the corresponding boundedness in Morrey spaces. As a result of this application, we obtain the boundedness of the Hardy-Littlewood maximal operator and Calder\'on-Zygmund operators in the framework of grand grand Morrey spaces.Comment: 8 page

    H-Bridge Converter as Basic Switching Topology Workbench in Power Electronics Teaching

    Get PDF
    This article deals with an effective power electronics learning setup based on a Full-Bridge converter used to teach electrical energy conversion experimentally. In the proposed learning by doing methodology, the hardware and the software are properly mixed in order to obtain an easy-to-use experimental learning environment. In this paper, the H-Bridge is the fundamental brick to build students’ knowledge on the main topics of power electronics converter circuit in different operative conditions. This H-Bridge comes with a reconfigurable output LCL to achieve several basic DC-DC powerconverters topologies. Converter current and voltage switching behavior can be investigated using the proposed setup. Furthermore, the friendly hardware and software set-up allows studying the converter modulation and control techniques of the different power electronics circuits

    EZETIMIBE PROTECTS THP-1 CELLS FROM ISCHEMIA-REPERFUSION INJURY REDUCING OXIDATIVE STRESS AND UP-REGULATING NRF2/ ARE GENE EXPRESSION

    Get PDF
    Background and Aims: We demonstrated that physical training, characterized by repeated ischemia-reperfusion (I-R) episodes (ischemic conditioning, IC), protects circulating cells from peripheral artery disease (PAD) patients against ischemic harms by reducing oxidative stress (OS) and by up-regulating nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway expression. Ezetimibe (Eze) has been shown to alleviate OS enhancing Nrf2 nuclear translocation in an AMPK/p62-dependent manner. In a cellular I-R and IC model, we aimed to investigate: 1) the effect of Eze on OS and Nrf2/ARE gene expression 2) whether Eze could have a synergistic effect on IC. Methods: THP-1 cells were treated with or without Eze (50mM) overnight, then subjected to 1 or 6 repetitive I-R cycles using EVOS FL Auto Imaging System. Reactive oxygen species (ROS) formation was evaluated with DCF in cytofluorimetry. Nrf2/ARE and p62 gene expression were evaluated by RT-PCR and western blotting. Results: When THP-1 cells were exposed to 1 I-R cycle, the preincubation with Eze significantly reduced ROS formation (p<0.01) and up-regulated Nrf2/ARE pathway expression and p62 phosphorylation (p<0.001). Multiple I-R cycles, acting as IC, significantly reduced ROS formation and upregulated Nrf2/ARE gene expression (p<0.001); in these conditions, Eze preincubation was able not only to almost abolish ROS formation (p<0.01) but also further up-regulate Nrf2/ARE expression. Conclusions: In our I-R model, Eze not only restores I-R-induced oxidative damages through Nrf2/ARE signaling up-regulation but also has a synergistic effect on IC. This new \u201cpleiotropic\u201d effect, if confirmed in vivo, may strengthen the use of Eze in PAD patien

    Cannabinoids and their therapeutic applications in mental disorders

    Get PDF
    Mental disorders represent a significant public health burden worldwide due to their high prevalence, chronically disabling nature, and substantial impact on quality of life. Despite growing knowledge of the pathological mechanisms that underlie the development of these disorders, a high percentage of patients do not respond to first-line clinical treatments; thus, there is a strong need for alternative therapeutic approaches. During the past half-century, after the identification of the endocannabinoid system and its role in multiple physiological processes, both natural and synthetic cannabinoids have attracted considerable interest as putative medications in pathological conditions such as, but not exclusive to, mental disorders. Here, we provide a summary of cannabinoid effects in support of possible therapeutic applications for major depression, bipolar disorder, anxiety, posttraumatic stress disorder, and schizophrenia. Considering this evidence, highlighted benefits and risks of cannabinoid use in the management of these illnesses require further experimental study

    Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    Get PDF
    Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats
    • …
    corecore