643 research outputs found

    The molecular genetic analysis of the expanding pachyonychia congenita case collection

    Get PDF
    BACKGROUND: Pachyonychia congenita (PC) is a rare autosomal dominant keratinizing disorder characterized by severe, painful, palmoplantar keratoderma and nail dystrophy, often accompanied by oral leucokeratosis, cysts and follicular keratosis. It is caused by mutations in one of five keratin genes: KRT6A, KRT6B, KRT6C, KRT16 or KRT17. OBJECTIVES: To identify mutations in 84 new families with a clinical diagnosis of PC, recruited by the International Pachyonychia Congenita Research Registry during the last few years. METHODS: Genomic DNA isolated from saliva or peripheral blood leucocytes was amplified using primers specific for the PC-associated keratin genes and polymerase chain reaction products were directly sequenced. RESULTS: Mutations were identified in 84 families in the PC-associated keratin genes, comprising 46 distinct keratin mutations. Fourteen were previously unreported mutations, bringing the total number of different keratin mutations associated with PC to 105. CONCLUSIONS: By identifying mutations in KRT6A, KRT6B, KRT6C, KRT16 or KRT17, this study has confirmed, at the molecular level, the clinical diagnosis of PC in these families

    Efficacy of different antifouling treatments for seawater cooling systems

    Get PDF
    In an industrial seawater cooling system, the effects of three different antifouling treatments, viz. sodium hypochlorite (NaClO), aliphatic amines (Mexel1432) and UV radiation, on the characteristics of the fouling formed were evaluated. For this study a portable pilot plant, as a side-stream monitoring system and seawater cooling system, was employed. The pilot plant simulated a power plant steam condenser, having four titanium tubes under different treatment patterns, where fouling progression could be monitored. The nature of the fouling obtained was chiefly inorganic, showing a clear dependence on the antifouling treatment employed. After 72 days the tubes under treatment showed a reduction in the heat transfer resistance (R) of around 70% for NaClO, 48% for aliphatic amines and 55% for UV, with respect to the untreated tube. The use of a logistic model was very useful for predicting the fouling progression and the maximum asymptotic value of the increment in the heat transfer resistance (DRmax). The apparent thermal conductivity (l) of the fouling layer showed a direct relationship with the percentage of organic matter in the collected fouling. The characteristics and mode of action of the different treatments used led to fouling with diverse physicochemical properties

    Resource dedication problem in a multi-project environment

    Get PDF
    There can be different approaches to the management of resources within the context of multi-project scheduling problems. In general, approaches to multiproject scheduling problems consider the resources as a pool shared by all projects. On the other hand, when projects are distributed geographically or sharing resources between projects is not preferred, then this resource sharing policy may not be feasible. In such cases, the resources must be dedicated to individual projects throughout the project durations. This multi-project problem environment is defined here as the resource dedication problem (RDP). RDP is defined as the optimal dedication of resource capacities to different projects within the overall limits of the resources and with the objective of minimizing a predetermined objective function. The projects involved are multi-mode resource constrained project scheduling problems with finish to start zero time lag and non-preemptive activities and limited renewable and nonrenewable resources. Here, the characterization of RDP, its mathematical formulation and two different solution methodologies are presented. The first solution approach is a genetic algorithm employing a new improvement move called combinatorial auction for RDP, which is based on preferences of projects for resources. Two different methods for calculating the projects’ preferences based on linear and Lagrangian relaxation are proposed. The second solution approach is a Lagrangian relaxation based heuristic employing subgradient optimization. Numerical studies demonstrate that the proposed approaches are powerful methods for solving this problem

    Upgrading construction and demolition waste management from downcycling to recycling in the Netherlands

    Get PDF
    Urban mining from construction and demolition waste (CDW) is highly relevant for the circular economy ambitions of the European Union (EU). Given the large volumes involved, end-of-life (EoL) concrete is identified as one of the priority streams for CDW recycling in most EU countries, but it is currently largely downcycled or even landfilled. The European projects C2CA and VEEP have proposed several cost-effective technologies to recover EoL concrete for new concrete manufacturing. To understand the potential effects of large-scale implementation of those recycling technologies on the circular construction, this study deployed static material flow analysis (MFA) for a set of EoL concrete management scenarios in the Netherlands constructed by considering the development factors in two, technological and temporal dimensions. On the technological dimension, three treatment systems for EoL concrete management, namely: business-as-usual treatment, C2CA technological system and VEEP technological system were investigated. On the temporal dimension, 2015 was selected as the reference year, representing the current situation, and 2025 as the future year for the prospective analysis. The results show that the development of cost-effective technologies has the potential to improve the share of recycling (as opposed to downcycling) in the Netherlands from around 5% in 2015 up to 22%~32% in 2025. From the academic aspect, the presented work illustrates how the temporal dimension can be included in the static MFA study to explore the potential effects in the future.Industrial Ecolog

    The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.

    Get PDF
    The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed

    Deep Sequencing of RNA from Blood and Oral Swab Samples Reveals the Presence of Nucleic Acid from a Number of Pathogens in Patients with Acute Ebola Virus Disease and Is Consistent with Bacterial Translocation across the Gut.

    Get PDF
    In this study, samples from the 2013-2016 West African Ebola virus outbreak from patients in Guinea with Ebola virus disease (EVD) were analyzed to discover and classify what other pathogens were present. Throat swabs were taken from deceased EVD patients, and peripheral blood samples were analyzed that had been taken from patients when they presented at the treatment center with acute illness. High-throughput RNA sequencing (RNA-seq) and bioinformatics were used to identify the potential microorganisms. This approach confirmed Ebola virus (EBOV) in all samples from patients diagnosed as acute positive for the virus by quantitative reverse transcription-PCR in deployed field laboratories. Nucleic acid mapping to Plasmodium was also used on the patient samples, confirming results obtained with an antigen-based rapid diagnostic test (RDT) conducted in the field laboratories. The data suggested that a high Plasmodium load, as determined by sequence read depth, was associated with mortality and influenced the host response, whereas a lower parasite load did not appear to affect outcome. The identifications of selected bacteria from throat swabs via RNA-seq were confirmed by culture. The data indicated that the potential pathogens identified in the blood samples were associated with translocation from the gut, suggesting the presence of bacteremia, which transcriptome data suggested may induce or aggravate the acute-phase response observed during EVD. Transcripts mapping to different viruses were also identified, including those indicative of lytic infections. The development of high-resolution analysis of samples from patients with EVD will help inform care pathways and the most appropriate general antimicrobial therapy to be used in a resource-poor setting. IMPORTANCE Our results highlight the identification of an array of pathogens in the blood of patients with Ebola virus disease (EVD). This has not been done before, and the data have important implications for the treatment of patients with EVD, particularly considering antibiotic stewardship. We show that EVD patients who were also infected with Plasmodium, particularly at higher loads, had more adverse outcomes than patients with lower levels of Plasmodium. However, the presence of Plasmodium did not influence the innate immune response, and it is likely that the presence of EBOV dominated this response. Several viruses other than EBOV were identified, and bacteria associated with sepsis were also identified. These findings were indicative of bacterial translocation across the gut during the acute phase of EVD

    Tight-binding parameters for charge transfer along DNA

    Full text link
    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The π\pi molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessary parameters for a tight-binding phenomenological description based on the π\pi molecular overlap. We find that usually the hopping parameters for holes are higher in magnitude compared to the ones for electrons, which probably indicates that hole transport along DNA is more favorable than electron transport. Our findings are also compared with existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table

    Clinical Presentation of Patients with Ebola Virus Disease in Conakry, Guinea

    Get PDF
    BACKGROUND: In March 2014, the World Health Organization was notified of an outbreak of Zaire ebolavirus in a remote area of Guinea. The outbreak then spread to the capital, Conakry, and to neighboring countries and has subsequently become the largest epidemic of Ebola virus disease (EVD) to date. METHODS: From March 25 to April 26, 2014, we performed a study of all patients with laboratory-confirmed EVD in Conakry. Mortality was the primary outcome. Secondary outcomes included patient characteristics, complications, treatments, and comparisons between survivors and nonsurvivors. RESULTS: Of 80 patients who presented with symptoms, 37 had laboratory-confirmed EVD. Among confirmed cases, the median age was 38 years (interquartile range, 28 to 46), 24 patients (65%) were men, and 14 (38%) were health care workers; among the health care workers, nosocomial transmission was implicated in 12 patients (32%). Patients with confirmed EVD presented to the hospital a median of 5 days (interquartile range, 3 to 7) after the onset of symptoms, most commonly with fever (in 84% of the patients; mean temperature, 38.6°C), fatigue (in 65%), diarrhea (in 62%), and tachycardia (mean heart rate, \u3e93 beats per minute). Of these patients, 28 (76%) were treated with intravenous fluids and 37 (100%) with antibiotics. Sixteen patients (43%) died, with a median time from symptom onset to death of 8 days (interquartile range, 7 to 11). Patients who were 40 years of age or older, as compared with those under the age of 40 years, had a relative risk of death of 3.49 (95% confidence interval, 1.42 to 8.59; P=0.007). CONCLUSIONS: Patients with EVD presented with evidence of dehydration associated with vomiting and severe diarrhea. Despite attempts at volume repletion, antimicrobial therapy, and limited laboratory services, the rate of death was 43%

    Deficient Plakophilin-1 Expression Due to a Mutation in PKP1 Causes Ectodermal Dysplasia-Skin Fragility Syndrome in Chesapeake Bay Retriever Dogs

    Get PDF
    In humans, congenital and hereditary skin diseases associated with epidermal cell-cell separation (acantholysis) are very rare, and spontaneous animal models of these diseases are exceptional. Our objectives are to report a novel congenital acantholytic dermatosis that developed in Chesapeake Bay retriever dogs. Nine affected puppies in four different litters were born to eight closely related clinically normal dogs. The disease transmission was consistent with an autosomal recessive mode of inheritance. Clinical signs occurred immediately after birth with superficial epidermal layers sloughing upon pressure. At three month of age, dogs exhibited recurrent superficial skin sloughing and erosions at areas of friction and mucocutaneous junctions; their coat was also finer than normal and there were patches of partial hair loss. At birth, histopathology revealed severe suprabasal acantholysis, which became less severe with ageing. Electron microscopy demonstrated a reduced number of partially formed desmosomes with detached and aggregated keratin intermediate filaments. Immunostaining for desmosomal adhesion molecules revealed a complete lack of staining for plakophilin-1 and anomalies in the distribution of desmoplakin and keratins 10 and 14. Sequencing revealed a homozygous splice donor site mutation within the first intron of PKP1 resulting in a premature stop codon, thereby explaining the inability to detect plakophilin-1 in the skin. Altogether, the clinical and pathological findings, along with the PKP1 mutation, were consistent with the diagnosis of ectodermal dysplasia-skin fragility syndrome with plakophilin-1 deficiency. This is the first occurrence of ectodermal dysplasia-skin fragility syndrome in an animal species. Controlled mating of carrier dogs would yield puppies that could, in theory, be tested for gene therapy of this rare but severe skin disease of children

    Germline CDH1 deletions in hereditary diffuse gastric cancer families

    Get PDF
    Germline CDH1 point or small frameshift mutations can be identified in 30–50% of hereditary diffuse gastric cancer (HDGC) families. We hypothesized that CDH1 genomic rearrangements would be found in HDGC and identified 160 families with either two gastric cancers in first-degree relatives and with at least one diffuse gastric cancer (DGC) diagnosed before age 50, or three or more DGC in close relatives diagnosed at any age. Sixty-seven carried germline CDH1 point or small frameshift mutations. We screened germline DNA from the 93 mutation negative probands for large genomic rearrangements by Multiplex Ligation-Dependent Probe Amplification. Potential deletions were validated by RT–PCR and breakpoints cloned using a combination of oligo-CGH-arrays and long-range-PCR. In-silico analysis of the CDH1 locus was used to determine a potential mechanism for these rearrangements. Six of 93 (6.5%) previously described mutation negative HDGC probands, from low GC incidence populations (UK and North America), carried genomic deletions (UK and North America). Two families carried an identical deletion spanning 193 593 bp, encompassing the full CDH3 sequence and CDH1 exons 1 and 2. Other deletions affecting exons 1, 2, 15 and/or 16 were identified. The statistically significant over-representation of Alus around breakpoints indicates it as a likely mechanism for these deletions. When all mutations and deletions are considered, the overall frequency of CDH1 alterations in HDGC is ∼46% (73/160). CDH1 large deletions occur in 4% of HDGC families by mechanisms involving mainly non-allelic homologous recombination in Alu repeat sequences. As the finding of pathogenic CDH1 mutations is useful for management of HDGC families, screening for deletions should be offered to at-risk families
    corecore