98 research outputs found
Novel colorectal endoscopic in vivo imaging and resection practice: a short practice guide for interventional endoscopists
Colorectal cancer remains a leading cause of cancer death in the UK. With the advent of screening programmes and developing techniques designed to treat and stage colorectal neoplasia, there is increasing pressure on the colonoscopist to keep up to date with the latest practices in this area. This review looks at the basic principles behind endoscopic mucosal resection and forward to the potential endoscopic tools, including high-magnification chromoscopic colonoscopy, high-frequency miniprobe ultrasound and confocal laser scanning endomicroscopic colonoscopy, that may soon become part of routine colorectal cancer management
Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart
Heart valve anomalies are some of the most common congenital heart defects, yet neither the genetic nor the epigenetic forces guiding heart valve development are well understood. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop, there is considerable regurgitation, resulting in reversing (or oscillatory) flows between the atrium and ventricle. As reversing flows are particularly strong stimuli to endothelial cells in culture, an attractive hypothesis is that heart valves form as a developmental response to retrograde blood flows through the maturing heart. Here, we exploit the relationship between oscillatory flow and heart rate to manipulate the amount of retrograde flow in the atrioventricular (AV) canal before and during valvulogenesis, and find that this leads to arrested valve growth. Using this manipulation, we determined that klf2a is normally expressed in the valve precursors in response to reversing flows, and is dramatically reduced by treatments that decrease such flows. Experimentally knocking down the expression of this shear-responsive gene with morpholine antisense oligonucleotides (MOs) results in dysfunctional valves. Thus, klf2a expression appears to be necessary for normal valve formation. This, together with its dependence on intracardiac hemodynamic forces, makes klf2a expression an early and reliable indicator of proper valve development. Together, these results demonstrate a critical role for reversing flows during valvulogenesis and show how relatively subtle perturbations of normal hemodynamic patterns can lead to both major alterations in gene expression and severe valve dysgenesis
A Western single-center experience with endoscopic submucosal dissection for early gastrointestinal cancers
Endoscopic submucosal dissection (ESD) has gained worldwide acceptance as a treatment for early gastrointestinal cancers (EGICs). However, the management of these tumors in the Western world is still mainly surgical. Our aim was to evaluate the safety and feasibility of ESD at a European center. Based on the knowledge transferred by one of the most experienced Japanese institutions, we conducted a pilot study on 25 consecutive patients with EGICs located in the esophagus (n = 3), stomach (n = 7), duodenum (n = 1), and colon (n = 14) at our tertiary center over a 2-year-period. The main outcome measurements were complete (R0) resection, as well as en-bloc resection and the management of complications. The R0 and en-bloc resection rates were 100% and 84%, respectively. There were three cases of bleeding and five cases of perforation. With a median follow up of 18 months, two recurrences were observed. We conclude that ESD for early esophageal and gastric cancers is feasible and effective, while colonic ESD requires more expertise
Transanal endoscopic microsurgery versus endoscopic mucosal resection for large rectal adenomas (TREND-study)
Background: Recent non-randomized studies suggest that extended endoscopic mucosal resection (EMR) is equally effective in removing large rectal adenomas as transanal endoscopic microsurgery (TEM). If equally effective, EMR might be a more cost-effective approach as this strategy does not require expensive equipment, general anesthesia and hospital admission. Furthermore, EMR appears to be associated with fewer complications. The aim of this study is to compare the cost-effectiveness and cost-utility of TEM and EMR for the resection of large rectal adenomas. Methods/design. Multicenter randomized trial among 15 hospitals in the Netherlands. Patients with a rectal adenoma 3 cm, located between 115 cm ab ano, will be randomized to a TEM- or EMR-treatment strategy. For TEM, patients will be treated under general anesthesia, adenomas will be dissected en-bloc by a full-thickness excision, and patients will be admitted to the hospital. For EMR, no or conscious sedation is used, lesions will be resected through the submucosal plane i
Impaired neural development in a zebrafish model for Lowe syndrome
Lowe syndrome, which is characterized by defects in the central nervous system, eyes and kidneys, is caused by mutation of the phosphoinositide 5-phosphatase OCRL1. The mechanisms by which loss of OCRL1 leads to the phenotypic manifestations of Lowe syndrome are currently unclear, in part, owing to the lack of an animal model that recapitulates the disease phenotype. Here, we describe a zebrafish model for Lowe syndrome using stable and transient suppression of OCRL1 expression. Deficiency of OCRL1, which is enriched in the brain, leads to neurological defects similar to those reported in Lowe syndrome patients, namely increased susceptibility to heat-induced seizures and cystic brain lesions. In OCRL1-deficient embryos, Akt signalling is reduced and there is both increased apoptosis and reduced proliferation, most strikingly in the neural tissue. Rescue experiments indicate that catalytic activity and binding to the vesicle coat protein clathrin are essential for OCRL1 function in these processes. Our results indicate a novel role for OCRL1 in neural development, and support a model whereby dysregulation of phosphoinositide metabolism and clathrin-mediated membrane traffic leads to the neurological symptoms of Lowe syndrome
Global Regulator SATB1 Recruits Ī²-Catenin and Regulates TH2 Differentiation in Wnt-Dependent Manner
Chromatin organizer SATB1 and Wnt transducer Ī²-catenin form a complex and regulate expression of GATA3 and TH2 cytokines in Wnt-dependent manner and orchestrate TH2 lineage commitment
The Leukemia-Associated Mllt10/Af10-Dot1l Are Tcf4/Ī²-Catenin Coactivators Essential for Intestinal Homeostasis
The leukemia-associated Mllt10/Af10 and its partner the histone methyltransferase Dot1l are identified as Tcf4/Ī²-catenin co-activators and shown to be essential for Wnt-driven endogenous gene expression, intestinal development and homeostasis
Cardiovascular development: towards biomedical applicability: Regulation of cardiomyocyte differentiation of embryonic stem cells by extracellular signalling
Investigating the signalling pathways that regulate heart development is essential if stem cells are to become an effective source of cardiomyocytes that can be used for studying cardiac physiology and pharmacology and eventually developing cell-based therapies for heart repair. Here, we briefly describe current understanding of heart development in vertebrates and review the signalling pathways thought to be involved in cardiomyogenesis in multiple species. We discuss how this might be applied to stem cells currently thought to have cardiomyogenic potential by considering the factors relevant for each differentiation step from the undifferentiated cell to nascent mesoderm, cardiac progenitors and finally a fully determined cardiomyocyte. We focus particularly on how this is being applied to human embryonic stem cells and provide recent examples from both our own work and that of others
- ā¦