63 research outputs found
Evaluation of an expanded satellite based mobile communications tracking system
Since the terrorist events in the United States on September 11, 2001, the Federal Motor Carrier Safety Administration has been testing and evaluating cargo tracking technologies to improve the safety, security, and efficiency of commercial motor vehicle operations. While satellite-based systems used for tracking vehicles and cargo provide sufficient geographic coverage in the majority of the United States, there remain several vital regions that are uncovered and difficult to monitor. One such region is Alaska, where officials arc particularly concerned with the hazardous materials shipments that are transported parallel to the Trans-Alaska Pipeline. This article analyzes the risks and benefits associated with adopting an Expanded Satellite-Based Mobile Communications Tracking System to monitor hazardous materials and high-value cargo in Alaska. Technical and acceptance risks are evaluated against the communication, safety, security and real time information benefits that the system provides. The findings indicate that the system provides a significant communications upgrade relative to previously available technology
Stable Matching for Dynamic Ride-sharing Systems
Dynamic ride-sharing systems enable people to share rides and increase the efficiency of urban transportation by connecting riders and drivers on short notice. Automated systems that establish ride-share matches with minimal input from participants provide the most convenience and the most potential for system-wide performance improvement, such as reduction in total vehicle-miles traveled. Indeed, such systems may be designed to match riders and drivers to maximize system performance improvement. However, system-optimal matches may not provide the maximum benefit to each individual participant. In this paper we consider a notion of stability for ride-share matches and present several mathematical programming methods to establish stable or nearly-stable matches, where we note that ride-share matching optimization is performed over time with incomplete information. Our numerical experiments using travel demand data for the metropolitan Atlanta region show that we can significantly increase the stability of ride-share matching solutions at the cost of only a small degradation in system-wide performance
The Value of Optimization in Dynamic Ride-Sharing: a Simulation Study in Metro Atlanta
Smartphone technology enables dynamic ride-sharing systems that bring together people with similar itineraries and time schedules to share rides on short-notice. This paper considers the problem of matching drivers and riders in this dynamic setting. We develop optimization-based approaches that aim at minimizing the total system-wide vehicle miles and individual travel costs. To assess the merits of our methods we present a simulation study based on 2008 travel demand data from metropolitan Atlanta. The simulation results indicate that the use of sophisticated optimization methods instead of simple greedy matching rules may substantially improve the performance of ride-sharing systems. Furthermore, even with relatively low participation rates, it appears that sustainable populations of dynamic ride-sharing participants may be possible even in relatively sprawling urban areas with many employment centers
Sustainable Passenger Transportation: Dynamic Ride-Sharing
Ride-share systems, which aim to bring together travelers with similar itineraries and time schedules, may provide significant societal and environmental benefits by reducing the number of cars used for personal travel and improving the utilization of available seat capacity. Effective and efficient optimization technology that matches drivers and riders in real-time is one of the necessary components for a successful ride-share system. We formally define dynamic ride-sharing and outline the optimization challenges that arise when developing technology to support ride-sharing. We hope that this paper will encourage more research by the transportation science and logistics community in this exciting, emerging area of public transportation
Stochastic Vehicle Routing with Recourse
We study the classic Vehicle Routing Problem in the setting of stochastic
optimization with recourse. StochVRP is a two-stage optimization problem, where
demand is satisfied using two routes: fixed and recourse. The fixed route is
computed using only a demand distribution. Then after observing the demand
instantiations, a recourse route is computed -- but costs here become more
expensive by a factor lambda.
We present an O(log^2 n log(n lambda))-approximation algorithm for this
stochastic routing problem, under arbitrary distributions. The main idea in
this result is relating StochVRP to a special case of submodular orienteering,
called knapsack rank-function orienteering. We also give a better approximation
ratio for knapsack rank-function orienteering than what follows from prior
work. Finally, we provide a Unique Games Conjecture based omega(1) hardness of
approximation for StochVRP, even on star-like metrics on which our algorithm
achieves a logarithmic approximation.Comment: 20 Pages, 1 figure Revision corrects the statement and proof of
Theorem 1.
Algorithm Engineering in Robust Optimization
Robust optimization is a young and emerging field of research having received
a considerable increase of interest over the last decade. In this paper, we
argue that the the algorithm engineering methodology fits very well to the
field of robust optimization and yields a rewarding new perspective on both the
current state of research and open research directions.
To this end we go through the algorithm engineering cycle of design and
analysis of concepts, development and implementation of algorithms, and
theoretical and experimental evaluation. We show that many ideas of algorithm
engineering have already been applied in publications on robust optimization.
Most work on robust optimization is devoted to analysis of the concepts and the
development of algorithms, some papers deal with the evaluation of a particular
concept in case studies, and work on comparison of concepts just starts. What
is still a drawback in many papers on robustness is the missing link to include
the results of the experiments again in the design
Average flow constraints and stabilizability in uncertain production-distribution systems
We consider a multi-inventory system with controlled flows and uncertain demands (disturbances) bounded within assigned compact sets. The system is modelled as a first-order one integrating the discrepancy between controlled flows and demands at different sites/nodes. Thus, the buffer levels at the nodes represent the system state. Given a long-term average demand, we are interested in a control strategy that satisfies just one of two requirements: (i) meeting any possible demand at each time (worst case stability) or (ii) achieving a predefined flow in the average (average flow constraints). Necessary and sufficient conditions for the achievement of both goals have been proposed by the authors. In this paper, we face the case in which these conditions are not satisfied. We show that, if we ignore the requirement on worst case stability, we can find a control strategy driving the expected value of the state to zero. On the contrary, if we ignore the average flow constraints, we can find a control strategy that satisfies worst case stability while optimizing any linear cost on the average control. In the latter case, we provide a tight bound for the cost
Stable Matching for Dynamic Ride-Sharing Systems
Dynamic ride-sharing systems enable people to share rides and increase the efficiency of urban transportation by connecting riders and drivers on short notice. Automated systems that establish ride-share matches with minimal input from participants provide the most convenience and the most potential for system-wide performance improvement, such as reduction in total vehicle-miles traveled. Indeed, such systems may be designed to match riders and drivers to maximize system performance improvement. However, system-optimal matches may not provide the maximum benefit to each individual participant. In this paper we consider a notion of stability for ride-share matches and present several mathematical programming methods to establish stable or nearly-stable matches, where we note that ride-share matching optimization is performed over time with incomplete information. Our numerical experiments using travel demand data for the metropolitan Atlanta region show that we can significantly increase the stability of ride-share matching solutions at the cost of only a small degradation in system-wide performance
- …