2 research outputs found

    The impact of environmentally friendly supramolecular coordination polymers as carbon steel corrosion inhibitors in HCl solution: synthesis and characterization

    No full text
    Abstract Two 3D-supramolecular coordination polymers (SCP1 & SCP2) have been synthesized and characterized by physicochemical and spectroscopic methods. In a solution of 1.0 M HCl, SCPs were used to prevent corrosion of carbon steel (CS). The inhibition productivity (%η) rises as the synthetic inhibitor dose rises, and the opposite is true as the temperature rises. The study was carried out using chemical (mass loss, ML) and electrochemical ( potentiodynamic polarization, PDP and electrochemical impedance microscopy, EIS) techniques, which showed %η reached to 93.1% and 92.5% for SCP1 & SCP2, respectively at 21 × 10−6 M, 25 °C. For the polarization results, SCPs behave as mixed-type inhibitors. With increasing doses of SCPs, the charge transfer resistance grew and the double layer's capacitance lowered. The creation of a monolayer on the surface of CS was demonstrated by the finding that the adsorption of SCPs on its surface followed the Henry adsorption isotherm. The parameters of thermodynamics were computed and explained. The physical adsorption of SCPs on the surface of CS is shown by the lowering values of free energy (∆Go ads < − 20 kJ mol−1) and increasing the activation energy (E* a) values in presence of SCP1 & SCP2 than in their absence. Atomic force microscope (AFM) and scanning electron microscopy (SEM) demonstrated the development of a protective thin film of SCPs precipitated on the surface of CS. There is a strong matching between results obtained from experimental and theoretical studies. Results from each approach that was used were consistent

    Novel porphyrin derivatives as corrosion inhibitors for stainless steel 304 in acidic environment: synthesis, electrochemical and quantum calculation studies

    No full text
    Abstract A Novel 5,10,15,20-tetra (thiophen-2-yl) porphyrin (P1) and 5,10,15,20-tetrakis (5-Bromothiophen-2-yl) porphyrin (P2) were successfully synthesized, and their chemical structures were proved based on its correct elemental analysis and spectral data (IR and 1H-NMR). These compounds were examined as corrosion inhibitors for stainless steel 304 (SS304) in 2 M HCl utilizing mass reduction (MR) and electrochemical tests at inhibitor concentration (1 × 10–6–21 × 10–6 M). The protection efficiency (IE %) was effectively enhanced with improving the concentration of investigated compounds and reached 92.5%, 88.5% at 21 × 10–6 M for P1 & P2, respectively and decreases with raising the temperature. Langmuir's isotherm was constrained as the best fitted isotherm depicts the physical–chemical adsorption capabilities of P1 & P2 on SS304 surface with change in ΔGo ads = 22.5 kJ mol−1. According to the PDP data reported, P1 and P2 work as mixed find inhibitors to suppress both cathodic and anodic processes. Porphyrin derivatives (P1 & P2) are included on the surface of SS304, according to surface morphology techniques SEM/EDX and AFM. Quantum calculations (DFT) and Monte Carlo simulation (MC) showed the impact of the chemical structure of porphyrin derivatives on their IE %
    corecore