2,884 research outputs found
Electron energy spectrum of the spin-liquid state in a frustrated Hubbard model
Non-local correlation effects in the half-filled Hubbard model on an
isotropic triangular lattice are studied within a spin polarized extension of
the dual fermion approach. A competition between the antiferromagnetic
non-collinear and the spin liquid states is strongly enhanced by an
incorporation of a k-dependent self-energy beyond the local dynamical
mean-field theory. The dual fermion correc- tions drastically decrease the
energy of a spin liquid state while leaving the non-collinear magnetic states
almost non-affected. This makes the spin liquid to become a preferable state in
a certain interval of interaction strength of an order of the magnitude of a
bandwidth. The spectral function of the spin-liquid Mott insulator is
determined by a formation of local singlets which results in the energy gap of
about twice larger than that of the 120 degrees antiferromagnetic Neel state.Comment: 6 pages, 4 figure
Exploring the Oxygen Order in Hg-1223 and Hg-1201 by 199Hg MAS NMR
We demonstrate the use of a high-resolution solid-state fast (45 kHz) magic
angle spinning (MAS) NMR for mapping the oxygen distribution in Hg-based
cuprate superconductors. We identify observed three peaks in 199Hg spectrum as
belonging to the different chemical environments in the HgO? layer with no
oxygen neighbors, single oxygen neighbor, and two oxygen neighbors. We discuss
observed differences between Hg-1201 and Hg-1223 materials.Comment: 4 pages, 2 figures included. Submitted to NATO Advanced Research
Workshop Proceedings (Miami January 2004
Recommended from our members
Oxygen diffusion in Sr<sub>0.75</sub>Y<sub>0.25</sub>CoO<sub>2.625</sub>: a molecular dynamics study
Oxygen diffusion in Sr0.75Y0.25CoO2.625 is investigated using molecular dynamics simulations in conjunction with an established set of Born model potentials. We predict an activation energy of diffusion for 1.56 eV in the temperature range of 1000-1400 K. We observe extensive disordering of the oxygen ions over a subset of lattice sites. Furthermore, oxygen ion diffusion both in the a-b plane and along the c axis requires the same set of rate-limiting ion hops. It is predicted that oxygen transport in Sr0.75Y0.25CoO2.625 is therefore isotropic
High pressure effects in fluorinated HgBa2Ca2Cu3O(8+d)
We have measured the pressure sensitivity of Tc in fluorinated
HgBa2Ca2Cu3O(8+d) (Hg-1223) ceramic samples with different F contents, applying
pressures up to 30 GPa. We obtained that Tc increases with increasing pressure,
reaching different maximum values, depending on the F doping level, and
decreases for a further increase of pressure. A new high Tc record (166 K +/- 1
K) was achieved by applying pressure (23 GPa) in a fluorinated Hg-1223 sample
near the optimum doping level. Our results show that all our samples are at the
optimal doping, and that fluorine incorporation decreases the crystallographic
-parameter concomitantly increasing the maximum attainable Tc. This effect
reveals that the compression of the axes is one of the keys that controls
the Tc of high temperature superconductors.Comment: 4 pages, 4 figures, submitted to Phys. Rev.
Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory
Strong electronic correlations pose one of the biggest challenges to solid
state theory. We review recently developed methods that address this problem by
starting with the local, eminently important correlations of dynamical mean
field theory (DMFT). On top of this, non-local correlations on all length
scales are generated through Feynman diagrams, with a local two-particle vertex
instead of the bare Coulomb interaction as a building block. With these
diagrammatic extensions of DMFT long-range charge-, magnetic-, and
superconducting fluctuations as well as (quantum) criticality can be addressed
in strongly correlated electron systems. We provide an overview of the
successes and results achieved---hitherto mainly for model Hamiltonians---and
outline future prospects for realistic material calculations.Comment: 60 pages, 42 figures, replaced by the version to be published in Rev.
Mod. Phys. 201
On the Existence of Heavy Pentaquarks: The large Nc and Heavy Quark Limits and Beyond
We present a very general argument that the analogue of a heavy pentaquark (a
state with the quantum numbers of a baryon combined with an additional light
quark and a heavy antiquark) must exist as a particle stable under strong
interactions in the combined heavy quark and large Nc limits of QCD. Moreover,
in the combined limit these heavy pentaquark states fill multiplets of
SU(4)xO(8)xSU(2). We explore the question of whether corrections in the
combined 1/Nc and 1/mQ expansions are sufficiently small to maintain this
qualitative result. Since no model-independent way is known to answer this
question, we use a class of ``realistic'' hadronic models in which a pentaquark
can be formed via nucleon-heavy meson binding through a pion-exchange
potential. These models have the virtue that they necessarily yield the correct
behavior in the combined limit, and the long-distance parts of the interactions
are model independent. If the long-distance attraction in these models were to
predict bound states in a robust way (i.e., largely insensitive to the details
of the short-range interaction), then one could safely conclude that heavy
pentaquarks do exist. However, in practice the binding does depend very
strongly on the details of the short-distance physics, suggesting that the real
world is not sufficiently near the combined large Nc, mQ limit to use it as a
reliable guide. Whether stable heavy pentaquarks exist remains an open
question.Comment: 11 pages; references adde
Positive parity pentaquark towers in large Nc QCD
We construct the complete set of positive parity pentaquarks, which
correspond in the quark model to {\bar s} q^{Nc+1} states with one unit of
orbital angular momentum L=1. In the large Nc limit they fall into the K=1/2
and K=3/2 irreps (towers) of the contracted SU(4)c symmetry. We derive
predictions for the mass spectrum and the axial couplings of these states at
leading order in 1/Nc. The strong decay width of the lowest-lying positive
parity exotic state is of order O(1/Nc), such that this state is narrow in the
large Nc limit. Replacing the antiquark with a heavy antiquark {\bar Q}
q^{Nc+1}, the two towers become degenerate, split only by O(1/mQ) hyperfine
interactions. We obtain predictions for the strong decay widths of heavy
pentaquarks to ordinary baryons and heavy H(*)_{\bar Q} mesons at leading order
in 1/Nc and 1/mQ.Comment: 21 pages, 2 figures, 5 table
- …