95 research outputs found
Climatic controls on hurricane patterns: A 1200-y near-annual record from Lighthouse Reef, Belize
Tropical cyclones (TCs) are powerful agents of destruction, and understanding climatic controls on TC patterns is of great importance. Over timescales of seasons to several decades, relationships among TC track, frequency, intensity and basin-scale climate changes are well documented by instrumental records. Over centuries to millennia, climate-shift influence on TC regimes remains poorly constrained. To better understand these relationships, records from multiple locations of TC strikes spanning millennia with high temporal resolution are required, but such records are rare. Here we report on a highly detailed sedimentary proxy record of paleo-TC strikes from the Blue Hole of Lighthouse Reef, Belize. Our findings provide an important addition to other high-resolution records, which collectively demonstrate that shifts between active and inactive TC regimes have occurred contemporaneously with shifts hemispheric-scale oceanic and atmospheric circulation patterns such as MDR SSTs and NAO mode, rather than with changes in local climate phenomena as has previously been suggested
Submerged reef terraces in the Maldivian Archipelago (Indian Ocean)
Sea-level changes have shaped the world's carbonate platform margins and continental shelves, leaving typical geomorphic imprints, such as drowned reef terraces. In this paper, we present the results of 112 scuba diving transects across seven different Maldivian atolls and one multibeam survey around Malé Island, the capital of Maldives. We report on the occurrence of drowned reef terraces down to 120 m depth. In total, we identified six levels of submerged terraces that we consider as indicative of periods of time with stable or slowly rising sea level that can be attributed either to deceleration of the last deglacial sea-level rise or to Late Quaternary sea-level highstands. We compare our dataset to the depth of reef terraces reported globally, and we discuss the reasons why common global submerged terrace levels are difficult to identify in the field record
Controls on Microbial and Oolitic Carbonate Sedimentation and Stratigraphic Cyclicity Within a Mixed Carbonate-Siliciclastic System: Upper Cambrian Wilberns Formation, Llano Uplift, Mason County, Texas, USA
The upper Cambrian Wilberns Formation in central Texas records deposition on a low-gradient shelf within a mixed carbonateâsiliciclastic tidal-flat system that changes offshore to subtidal shelf and open-marine oolitic skeletal shoals with large microbial mounds. Siliciclastic sediment is interpreted to have been delivered to the tidal flat by aeolian processes because of the narrow range in grain size and paucity of clay. Tidal influence is dominant as evidenced by reversing currents and desiccation on the tidal flat, and megaripples with reversing current indicators in offshore shoals. Intraclastic conglomerates were deposited in broad channels on the tidal flats during storm surges. Microbialite deposition is interpreted to be controlled by accommodation favouring amalgamated thin biostromes developed in the tidal flat vs. larger mounds with greater synoptic relief in the offshore, and current energy resulting in preferential elongation of offshore mounds in a NEâSW orientation. Intertidal mounds and biostromes grew in the presence of significant siliciclastic flux and trapped it within their structure, whereas offshore large buildups incorporated little siliciclastic component. Oolite and skeletal grainstone formed in tide agitated shoals associated with large subtidal microbial mounds. Storms extensively recycled and redistributed skeletal and oolitic sands from the offshore shoals across the shelf as thin sand sheets. Spatial mixing of siliciclastic and carbonate sediment occurred across the tidal flat and shelf. Low-frequency and intermediate-frequency stratigraphic cycles were driven by shifts in the shoreline and changes in rate of siliciclastic flux in response to relative sea-level fluctuation. Random facies stacking and the lack of metre-scale cyclicity are interpreted to reflect stratigraphic incompleteness and an episodic signal introduced by storms
Quaternary CaCO3 Input and Preservation within Antarctic Intermediate Water Mineralogic and Isotopic Results from Holes 818B and 817A, Townsville Trough (Northeast Australian Margin)
The Quaternary history of metastable CaCO3 input and preservation within Antarctic Intermediate Water (AAIW) was examined by studying sediments from ODP Holes 818B (745 mbsl) and 817A (1015 mbsl) drilled in the Townsville Trough on the southern slope of the Queensland Plateau. These sites lie within the core of modern AAIW, and near the aragonite saturation depth (-1000 m). Thus, they are well positioned to monitor chemical changes that may have occurred within this watermass during the past 1.6 m.y. The percent of fine aragonite content, percent of fine magnesian calcite content, and percent of whole pteropods (>355 ÎŒm) were used to separate the fine aragonite input signal from the CaCO3 preservation signal. Stable ÎŽ 1 8 Ξ and ÎŽ13C isotopic ratios were determined for the planktonic foraminifer Globigerinoides sacculifer and, in Hole 818B, for the benthic foraminifer Cibicidoides spp. to establish the oxygen isotope stratigraphy and to study the relationship between intermediate and shallow water ÎŽ13C of ÎŁ C O 2 and the relationship between benthic foraminiferal ÎŽ13C and CaCO3 preservation within intermediate waters of the Townsville Trough. Data were converted from depth to age using oxygen isotope stratigraphy, nannostratigraphy, and foraminiferal biostratigraphy. Several long hiatuses and the absence of magnetostratigraphy did not permit time series analysis. The principal results of the CaCO3 preservation study include the following (1) a general increase in CaCO3 preservation between 0.9 and 1.6 Ma; (2) a CaCO3 dissolution maximum near 0.9 Ma, primarily expressed in the Hole 818B fine aragonite record; (3) an abrupt and permanent increase of fine aragonite content between 0.86 and 0.875 Ma in both Holes 818B and 817A probably reflecting a dramatic increase of fine carbonate sediment production on the Queensland Plateau; (4) an improvement in CaCO3 preservation near 0.87 Ma, which accompanied the increase of sediment input, indicated by the first appearance of whole pteropods in the deeper Hole 817A and a "spike" in the percent whole pteropods in Hole 818B; (5) a period of strong CaCO3 dissolution during the mid-Brunhes Chron from 0.36 to 0.41 Ma; and (6) a complex CaCO3 preservation pattern between 0.36 Ma and the present characterized by a general increase in CaCO3 preservation through time with good preservation during interglacial stages and poor preservation during glacial stages. The long-term aragonite preservation histories for Holes 818B and 817A appear to be similar in general shape, although different in detail, to CaCO3 preservation records from the deep Indian and central equatorial Pacific oceans as well as from intermediate water sites in the Bahamas and the Maldives. All of these areas have experienced CaCO3 dissolution at about 0.9 Ma and during the mid-Brunhes Chron. However, the late Quaternary (0 to 0.36 Ma) glacial to interglacial preservation pattern in Holes 818B and 817A is out of phase with CaCO3 preservation records for sediments deposited in Pacific deep and bottom waters. The sharp increase in bank production and export from the Queensland Plateau and the coincident improvement of CaCO3 preservation between 0.86 and 0.875 Ma may have been synchronous with the initiation of the Great Barrier Reef and roughly coincides with an increase in carbonate accumulation on the Bahama banks, in the western North Atlantic Ocean, and on Mururoa atoll, in the central South Pacific Ocean. The development of these reef systems during the middle Quaternary may be related to the transition in the frequency and amplitude of global sea level change from 41 k.y. low amplitude cycles prior to 0.9 Ma to 100 k.y. high amplitude cycles after 0.73 Ma.
Carbon isotopic analyses show that benthic foraminiferal ÎŽ13C values (Cibicidoides spp.) have been heavier than planktonic foraminiferal ÎŽ13C values (G. sacculifer) throughout most of the last 0.54 m.y., which may indicate that 13C-enriched intermediate water (AAIW) occupied the Townsville Trough during much of the late Quaternary. Furthermore, both planktonic and benthic foraminiferal ÎŽ13C values are often observed to be heaviest during interglacial to glacial transitions, and lightest during glacial to interglacial transitions. We suggest that this pattern is the result of changes in the preformed ÎŽ13C of XCO2 of AAIW and may reflect changes in nutrient utilization by primary producers in Antarctic surface waters, changes in the ÎŽ13C of upwelled Circumpolar Deep Water, or changes in the extent and/or temperature of equilibration between surface water and atmospheric CO2 within the Antarctic Polar Frontal Zone (the source area for AAIW). Finally, the poor correlation between percent of whole pteropods (aragonite preservation) and ÎŽ13C of Cibicidoides spp. may be the result of a decoupling of ÎŽ13C from CO2 due to the numerous and complex variables that combine to produce the preformed ÎŽ13C of AAIW
Anomalous widespread arid events in Asia over the past 550,000 years
Records of element ratios obtained from the Maldives Inner Sea sediments provide a detailed view on how the Indian Monsoon System has varied at high-resolution time scales. Here, we present records from International Ocean Discovery Program (IODP) Site U1471 based on a refined chronology through the past 550,000 years. The record's high resolution and a proper approach to set the chronology allowed us to reconstruct changes in the Indian Monsoon System on a scale of anomalies and to verify their relationships with established records from the East Asian Monsoon System. On the basis of Fe/sum and Fe/Si records, it can be demonstrated that the Asia continental aridity tracks sea-level changes, while the intensity of winter monsoon winds responds to changes in Northern Hemisphere summer insolation. Furthermore, the anomalies of continental aridity and intensity of winter monsoon winds at millennial-scale events exhibit power in the precession band, nearly in antiphase with Northern Hemisphere summer insolation. These observations indicate that the insolation drove the anomalies in the Indian Summer Monsoon. The good correspondence between our record and the East Asian monsoon anomaly records suggests the occurrence of anomalous widespread arid events in Asia.info:eu-repo/semantics/publishedVersio
Structure and evolution of the Gulf of Lions: The Sardinia seismic experiment and the GOLD (Gulf of Lions Drilling) project
International audienceThe study of the deep structure and evolution of passive continental margins is important for the understanding of rifting processes and the formation of associated sedimentary basins. Since the classical models of McKenzie (1978) and Wernicke (1985), understanding how passive continental margins form, that is to say mainly the way that continental lithosphere is thinned leading to subsidence, remains one of the main challenges in the Earth sciences. Many recent observations and discoveries have modified our basic views of margin formation. The conservational models paradigm (i.e., simple shear, pure shear, or polyphase models), which exclude exchanges between lower continental crust and upper mantle and which are usually proposed to explain lithospheric stretching and consequent crustal thinning of passive continental margins, fail to completely explain all these observations. Furthermore, these models imply a large amount of horizontal movement, movements not observed in the field. In consequence, new concepts need to be built and tested
Megabank found? Flanks record sea level
On Leg 101, the first international voyage for the Ocean Drilling Program, the deep-sea drilling ship JOIOES Resolution (SEDCO/BP 471) left Miami, Fla., on Jan. 31 to investigate the geology of the Bahamas. (Leg 100 tested the Resolution's readiness. See July Geotimes.) Before returning to Miami on March 14, the crew had drilled 19 holes al 11 sites and recovered 46.2% of the cored section (about 1.5 of 3.1 km cored). The scientific party wanted to test conflicting hypotheses about the development of the modern shallow water carbonate banks and intervening deep -water throughs in the Bahamas, and to study the growth patterns of carbonate slopes and their response to sea-level fluctuations. Those objectives (the 'deep ' and the 'shallow') were selected beause recent advances in interpreting the micropaleontology of shallow-water carbonate platforms, coupled with data from previous sedimentological investigations and regional and site-specific seismic surveys, now permit consistent stratigraphic comparisons in the Bahamas
Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe
The suitability of MIS 11c and MIS 19c as analogues of our present interglacial and its natural evolution is still debated. Here we examine the regional expression of the Holocene and its orbital analogues over SW Iberia using a model-data comparison approach. Regional tree fraction and climate based on snapshot and transient experiments using the LOVECLIM model are evaluated against the terrestrial-marine profiles from Site U1385 documenting the regional vegetation and climatic changes. The pollen-based reconstructions show a larger forest optimum during the Holocene compared to MIS 11c and MIS 19c, putting into question their analogy in SW Europe. Pollen-based and model results indicate reduced MIS 11c forest cover compared to the Holocene primarily driven by lower winter precipitation, which is critical for Mediterranean forest development. Decreased precipitation was possibly induced by the amplified MIS 11c latitudinal insolation and temperature gradient that shifted the westerlies northwards. In contrast, the reconstructed lower forest optimum at MIS 19c is not reproduced by the simulations probably due to the lack of Eurasian ice sheets and its related feedbacks in the model. Transient experiments with time-varying insolation and CO2 reveal that the SW Iberian forest dynamics over the interglacials are mostly coupled to changes in winter precipitation mainly controlled by precession, CO2 playing a negligible role. Model simulations reproduce the observed persistent vegetation changes at millennial time scales in SW Iberia and the strong forest reductions marking the end of the interglacial "optimum".SFRH/BD/9079/2012, SFRH/BPD/108712/2015, SFRH/BPD/108600/2015info:eu-repo/semantics/publishedVersio
Coccolithophores as proxy of seawater changes at orbital-to-millennial scale during middle Pleistocene Marine Isotope Stages 14-9 in North Atlantic core MD01-2446
midlatitude North Atlantic, to reconstruct climatically induced sea surface water conditions throughout Marine Isotope Stages (MIS) 14â9. The data are compared to new and available paleoenvironmental proxies from the same site as well as other nearby North Atlantic records that support the coccolithophore signature at glacialâinterglacial to millennial climate scale. Total coccolithophore absolute abundance increases during interglacials but abruptly drops during the colder glacial phases and deglaciations. Coccolithophore warm water taxa (wwt) indicate that MIS11c and MIS9e experienced warmer and more stable conditions throughout the whole photic zone compared to MIS13. MIS11 was a longâlasting warmer and stable interglacial characterized by a climate optimum during MIS11c when a more prominent influence of the subtropical front at the site is inferred. The wwt pattern also suggests distinct interstadial and stadial events lasting about 4â10 kyr. The glacial increases of Gephyrocapsa margereliâG. muellerae 3â4â”m along with higher values of Corg, additionally supported by the total alkenone abundance at Site U1313, indicate more productive surface waters, likely reflecting the migration of the polar front into the midlatitude North Atlantic. Distinctive peaks of G. margereliâmuellerae (>4â”m), C. pelagicus pelagicus , Neogloboquadrina pachyderma left coiling, and reworked nannofossils, combined with minima in total nannofossil accumulation rate, are tracers of Heinrichâtype events during MIS12 and MIS10. Additional Heinrichâtype events are suggested during MIS12 and MIS14 based on biotic proxies, and we discuss possible iceberg sources at these times. Our results improve the understanding of midâBrunhes paleoclimate and the impact on phytoplankton diversity in the midlatitude North Atlantic region.Provided by PTCRIS: 58282, C2007-FCT/319/2006info:eu-repo/semantics/publishedVersio
- âŠ