167 research outputs found

    Light Filaments Without Self Guiding

    Get PDF
    An examination of the propagation of intense 200 fs pulses in water reveals light filaments not sustained by the balance between Kerr-induced self-focusing and plasma-induced defocusing. Their appearance is interpreted as the consequence of a spontaneous reshaping of the wave packet form a gaussian into a conical wave, driven by the requirement of maximum localization, minimum losses and stationarity in the presence of non-linear absorption.Comment: Submitted to Phys. Rev. Lett. on July 7th, 200

    On the nature of spatiotemporal light bullets in bulk Kerr media

    Get PDF
    We present a detailed experimental investigation, which uncovers the nature of light bullets generated from self-focusing in a bulk dielectric medium with Kerr nonlinearity in the anomalous group velocity dispersion regime. By high dynamic range measurements of three-dimensional intensity profiles, we demonstrate that the light bullets consist of a sharply localized high-intensity core, which carries the self-compressed pulse and contains approximately 25% of the total energy, and a ring-shaped spatiotemporal periphery. Sub-diffractive propagation along with dispersive broadening of the light bullets in free space after they exit the nonlinear medium indicate a strong space-time coupling within the bullet. This finding is confirmed by measurements of spatiotemporal energy density flux that exhibits the same features as stationary, polychromatic Bessel beam, thus highlighting the physical nature of the light bullets

    Self-Guided Intense Laser Pulse Propagation in Air

    Get PDF
    We report on observation of self-guiding of picosecond laser pulses in air that produces large-scale self-phase modulation. The converging picosecond laser beam produced a confined filament over 3 m of propagation with the whitelight spectrum

    Extreme Events in Resonant Radiation from Three-dimensional Light Bullets

    Get PDF
    We report measurements that show extreme events in the statistics of resonant radiation emitted from spatiotemporal light bullets. We trace the origin of these extreme events back to instabilities leading to steep gradients in the temporal profile of the intense light bullet that occur during the initial collapse dynamics. Numerical simulations reproduce the extreme valued statistics of the resonant radiation which are found to be intrinsically linked to the simultaneous occurrence of both temporal and spatial self-focusing dynamics. Small fluctuations in both the input energy and in the spatial phase curvature explain the observed extreme behaviour.Comment: 5 pages, 5 figures, submitte

    Non-linear unbalanced Bessel beams: Stationary conical waves supported by nonlinear losses

    Get PDF
    Nonlinear losses accompanying Kerr self-focusing substantially impacts the dynamic balance of diffraction and nonlinearity, permitting the existence of localized and stationary solutions of the 2D+1 nonlinear Schrodinger equation which are stable against radial collapse. These are featured by linear conical tails that continually refill the nonlinear, central spot. An experiment shows that the discovered solution behaves as strong attractor for the self-focusing dynamics in Kerr media.Comment: 4 pages, 2 figures; experimental verification adde

    Space-Time Recovery of Arbitrarily Shaped Wave-Packets by Means of Three Dimensional Imaging Technique

    Get PDF
    We study numerically and experimentally self-focusing dynamics of femtosecond light pulses. By demonstrating the potential of three dimensional imaging technique for quantitative recovery of complex (arbitrarily shaped) wave packets, we monitor space-time transformation dynamics of 150-fs light pulse, which undergoes self-focusing and filamentation in water. Peculiar spatiotemporal and spectral features reveal conical nature of resulting wave-packet

    Conical emission, pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses

    Get PDF
    The precise observation of the angle-frequency spectrum of light filaments in water reveals a scenario incompatible with current models of conical emission (CE). Its description in terms of linear X-wave modes leads us to understand filamentation dynamics requiring a phase- and group-matched, Kerr-driven four-wave-mixing process that involves two highly localized pumps and two X-waves. CE and temporal splitting arise naturally as two manifestations of this process

    Noise reduction in 3D noncollinear parametric amplifier

    Get PDF
    We analytically find an approximate Bloch-Messiah reduction of a noncollinear parametric amplifier pumped with a focused monochromatic beam. We consider type I phase matching. The results are obtained using a perturbative expansion and scaled to a high gain regime. They allow a straightforward maximization of the signal gain and minimization of the parametric fluorescence noise. We find the fundamental mode of the amplifier, which is an elliptic Gaussian defining the optimal seed beam shape. We conclude that the output of the amplifier should be stripped of higher order modes, which are approximately Hermite-Gaussian beams. Alternatively, the pump waist can be adjusted such that the amount of noise produced in the higher order modes is minimized.Comment: 18 pages, 9 figures, accepted to Applied Physics

    Axial emission and spectral broadening in self-focusing of femtosecond Bessel beams.

    Get PDF
    We report on the experimental observations of on-axis spectral broadening arising from self-focusing of the axicon-generated femtosecond Bessel beam in water. The observed spectral broadening is interpreted by a nonlinearly phase-matched four-wave mixing process involving the intense conical pump, the axial signal and a conical idler wave

    Dynamic Nonlinear X-waves for Femtosecond Pulse Propagation in Water

    Full text link
    Recent experiments on femtosecond pulses in water displayed long distance propagation analogous to that reported in air. We verify this phenomena numerically and show that the propagation is dynamic as opposed to self-guided. Furthermore, we demonstrate that the propagation can be interpreted as due to dynamic nonlinear X-waves whose robustness and role in long distance propagation is shown to follow from the interplay between nonlinearity and chromatic dispersion.Comment: 4 page
    corecore