8,877 research outputs found

    Attentional processes during P3-based Brain Computer Interface task in amyotrophic lateral sclerosis patients

    Get PDF
    To be available for a wide range of end-users a brain-computer interface (BCI) should be flexible and adaptable to end-users’ cognitive strengths and weaknesses. People’s cognitive abilities change according to the disease they are affected by, and people suffering from the same disease could have different cognitive capacities. We aimed at investigating how the amyotrophic lateral sclerosis (ALS) disease, and two different cognitive attentional aspects [1] influenced the usage of a P3-based BC

    Improved WKB analysis of Slow-Roll Inflation

    Full text link
    We extend the WKB method for the computation of cosmological perturbations during inflation beyond leading order and provide the power spectra of scalar and tensor perturbations to second order in the slow-roll parameters. Our method does not require that the slow-roll parameters be constant. Although leading and next-to-leading results in the slow-roll parameters depend on the approximation technique used in the computation, we find that the inflationary theoretical predictions obtained may reach the accuracy required by planned observations. In two technical appendices, we compare our techniques and results with previous findings.Comment: REVTeX 4, 13 pages, no figures, final version to appear in Phys. Rev.

    Indium selenide: An insight into electronic band structure and surface excitations

    Get PDF
    We have investigated the electronic response of single crystals of indium selenide by means of angle-resolved photoemission spectroscopy, electron energy loss spectroscopy and density functional theory. The loss spectrum of indium selenide shows the direct free exciton at similar to 1.3 eV and several other peaks, which do not exhibit dispersion with the momentum. The joint analysis of the experimental band structure and the density of states indicates that spectral features in the loss function are strictly related to single-particle transitions. These excitations cannot be considered as fully coherent plasmons and they are damped even in the optical limit, i.e. for small momenta. The comparison of the calculated symmetry-projected density of states with electron energy loss spectra enables the assignment of the spectral features to transitions between specific electronic states. Furthermore, the effects of ambient gases on the band structure and on the loss function have been probed

    Causality estimates among brain cortical areas by Partial Directed Coherence: simulations and application to real data

    Get PDF
    The problem of the definition and evaluation of brain connectivity has become a central one in neuroscience during the latest years, as a way to understand the organization and interaction of cortical areas during the execution of cognitive or motor tasks. Among various methods established during the years, the Partial Directed Coherence (PDC) is a frequency-domain approach to this problem, based on a multivariate autoregressive modeling of time series and on the concept of Granger causality. In this paper we propose the use of the PDC method on cortical signals estimated from high resolution EEG recordings, a non invasive method which exhibits a higher spatial resolution than conventional cerebral electromagnetic measures. The principle contributions of this work are the results of a simulation study, testing the performances of PDC, and a statistical analysis (via the ANOVA, analysis of variance) of the influence of different levels of Signal to Noise Ratio and temporal length, as they have been systematically imposed on simulated signals. An application to high resolution EEG recordings during a foot movement is also presented

    Differences between experimental and placebo arms in manual therapy trials: a methodological review

    Get PDF
    Background: To measure the specific effectiveness of a given treatment in a randomised controlled trial, the intervention and control groups have to be similar in all factors not distinctive to the experimental treatment. The similarity of these non-specific factors can be defined as an equality assumption. The purpose of this review was to evaluate the equality assumptions in manual therapy trials. Methods: Relevant studies were identified through the following databases: EMBASE, MEDLINE, SCOPUS, WEB OF SCIENCE, Scholar Google, clinicaltrial.gov, the Cochrane Library, chiloras/MANTIS, PubMed Europe, Allied and Complementary Medicine (AMED), Physiotherapy Evidence Database (PEDro) and Sciencedirect. Studies investigating the effect of any manual intervention compared to at least one type of manual control were included. Data extraction and qualitative assessment were carried out independently by four reviewers, and the summary of results was reported following the PRISMA statement. Result: Out of 108,903 retrieved studies, 311, enrolling a total of 17,308 patients, were included and divided into eight manual therapy trials categories. Equality assumption elements were grouped in three macro areas: patient-related, context-related and practitioner-related items. Results showed good quality in the reporting of context-related equality assumption items, potentially because largely included in pre-existent guidelines. There was a general lack of attention to the patient- and practitioner-related equality assumption items. Conclusion: Our results showed that the similarity between experimental and sham interventions is limited, affecting, therefore, the strength of the evidence. Based on the results, methodological aspects for planning future trials were discussed and recommendations to control for equality assumption were provided

    Food-borne Lactiplantibacillus plantarum protect normal intestinal cells against inflammation by modulating reactive oxygen species and IL-23/IL-17 axis

    Get PDF
    Food-associated Lactiplantibacillus plantarum (Lpb. plantarum) strains, previously classified as Lactobacillus plantarum, are a promising strategy to face intestinal inflammatory diseases. Our study was aimed at clarifying the protective role of food-borne Lpb. plantarum against inflammatory damage by testing the scavenging microbial ability both in selected strains and in co-incubation with normal mucosa intestinal cells (NCM460). Here, we show that Lpb. plantarum endure high levels of induced oxidative stress through partially neutralizing reactive oxygen species (ROS), whereas they elicit their production when co-cultured with NCM460. Moreover, pre-treatment with food-borne Lpb. plantarum significantly reduce pro-inflammatory cytokines IL-17F and IL-23 levels in inflamed NCM460 cells. Our results suggest that food-vehicled Lpb. plantarum strains might reduce inflammatory response in intestinal cells by directly modulating local ROS production and by triggering the IL-23/IL-17 axis with future perspectives on health benefits in the gut derived by the consumption of functional foods enriched with selected strains

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Emergent D6 symmetry in fully relaxed magic-angle twisted bilayer graphene

    Get PDF
    We present a tight-binding calculation of a twisted bilayer graphene at magic angle \u3b8 3c1.08, allowing for full, in- and out-of-plane, relaxation of the atomic positions. The resulting band structure displays, as usual, four narrow minibands around the neutrality point, well separated from all other bands after the lattice relaxation. A thorough analysis of the miniband Bloch functions reveals an emergent D6 symmetry, despite the lack of any manifest point-group symmetry in the relaxed lattice. The Bloch functions at the \u393 point are degenerate in pairs, reflecting the so-called valley degeneracy. Moreover, each of them is invariant under C3z, i.e., transforming like a one-dimensional, in-plane symmetric irreducible representation of an "emergent" D6 group. Out of plane, the lower doublet is even under C2x, while the upper doublet is odd, which implies that at least eight Wannier orbitals, two s-like and two pz-like ones for each of the supercell sublattices AB and BA, are necessary but probably not sufficient to describe the four minibands. This unexpected one-electron complexity is likely to play an important role in the still unexplained metal-insulator-superconductor phenomenology of this system
    corecore