8,131 research outputs found
Can an ethical revival of prudence within prudential regulation tackle corporate psychopathy?
The view that corporate psychopathy played a significant role in causing the global financial crisis, although insightful, paints a reductionist picture of what we present as the broader issue. Our broader issue is the tendency for psychopathy, narcissism and Machiavellianism to cluster psychologically and culturally as ‘dark leadership’ within global financial institutions. Strong evidence for their co-intensification across society and in corporations ought to alarm financial regulators. We argue that an ‘ethical revival’ of prudence within prudential regulation ought to be included in any package of solutions. Referencing research on moral muteness and the role of language in framing thoughts and behaviours, we recommend that regulators define prudence in an explicitly normative sense, an approach that may be further strengthened by drawing upon a widely appealing ethic of intergenerational care. An ethical revival of prudence, we argue, would allow the core problems of greed and myopia highlighted by corporate psychopathy theory to be addressed in a politically sensitive manner which recognises the pitfalls of regulating directly against corporate psychopathy. Furthermore, it would provide a viable conceptual framework to guide regulators along the treacherous path to more intrusive cultural regulation
Exposing the human nude phenotype [4]
Peer reviewedSubmitted Versio
UPC++: A high-performance communication framework for asynchronous computation
UPC++ is a C++ library that supports high-performance computation via an asynchronous communication framework. This paper describes a new incarnation that differs substantially from its predecessor, and we discuss the reasons for our design decisions. We present new design features, including future-based asynchrony management, distributed objects, and generalized Remote Procedure Call (RPC). We show microbenchmark performance results demonstrating that one-sided Remote Memory Access (RMA) in UPC++ is competitive with MPI-3 RMA; on a Cray XC40 UPC++ delivers up to a 25% improvement in the latency of blocking RMA put, and up to a 33% bandwidth improvement in an RMA throughput test. We showcase the benefits of UPC++ with irregular applications through a pair of application motifs, a distributed hash table and a sparse solver component. Our distributed hash table in UPC++ delivers near-linear weak scaling up to 34816 cores of a Cray XC40. Our UPC++ implementation of the sparse solver component shows robust strong scaling up to 2048 cores, where it outperforms variants communicating using MPI by up to 3.1x. UPC++ encourages the use of aggressive asynchrony in low-overhead RMA and RPC, improving programmer productivity and delivering high performance in irregular applications
Senior men's pacing profiles at the IAAF World Cross Country Championships.
The aim of this study was to describe pacing profiles used by senior men competing in the World Cross Country Championships. Lap times were collated for 1273 competitors across 10 races. Each individual's lap times were expressed as a percentage of the eventual winner's lap times, and athletes were grouped according to finishing position. Most athletes started the race by following the pace set by the leaders but slowed relative to the winner with each successive lap. The gold medallists were faster than the other medallists only after the final lap (P < 0.001). Most athletes who dropped out (61%) had completed the first lap within 105% of the winner's lap time. The medallists used a strategy of running close to the front from an early stage, but did not separate themselves from other top 15 finishers until halfway, with the eventual medal positions decided even closer to the finish. Athletes finishing further down had positive pacing profiles relative to the winner, possibly because of early fatigue caused by a relatively quick first lap. Athletes should note that a patient approach during the early stages can benefit not only the mass field but also those who aim to win a medal
Even Between-Lap Pacing Despite High Within-Lap Variation During Mountain Biking
Purpose: Given the paucity of research on pacing strategies during competitive events, this study examined
changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap
mountain-bike race over variable terrain. Methods: A global-positioning-system (GPS) unit (Garmin, Edge
305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike
riders (mean ± SD age = 27.2 ± 5.0 y, stature = 176.8 ± 8.1 cm, mass = 76.3 ± 11.7 kg, VO2max = 55.1 ± 6.0 mL
· kg–1 . min–1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA
for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance
and elevation to observe the presence of intralap variation. Results: There was no significant difference in lap times (P = .99) or lap velocity (P = .65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional
nonmonotonic variation not related to terrain. Conclusion: Participants adopted an even pace strategy across
the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations
of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity
may be associated with dynamic regulation of self-paced exercise
Calibration of Plastic Phoswich Detectors for Charged Particle Detection
The response of an array of plastic phoswich detectors to ions of has been measured from =12 to 72 MeV. The detector response has been
parameterized by a three parameter fit which includes both quenching and high
energy delta-ray effects. The fits have a mean variation of with
respect to the data.Comment: 17 pages, 5 figure
Recommended from our members
Birds multiplex spectral and temporal visual information via retinal On- and Off-channels
In vertebrate vision, early retinal circuits divide incoming visual information into functionally opposite elementary signals: On and Off, transient and sustained, chromatic and achromatic. Together these signals can yield an efficient representation of the scene for transmission to the brain via the optic nerve. However, this long-standing interpretation of retinal function is based on mammals, and it is unclear whether this functional arrangement is common to all vertebrates. Here we show that male poultry chicks use a fundamentally different strategy to communicate information from the eye to the brain. Rather than using functionally opposite pairs of retinal output channels, chicks encode the polarity, timing, and spectral composition of visual stimuli in a highly correlated manner: fast achromatic information is encoded by Off-circuits, and slow chromatic information overwhelmingly by On-circuits. Moreover, most retinal output channels combine On- and Off-circuits to simultaneously encode, or multiplex, both achromatic and chromatic information. Our results from birds conform to evidence from fish, amphibians, and reptiles which retain the full ancestral complement of four spectral types of cone photoreceptors
Neutrons from multiplicity-selected La-La and Nb-Nb collisions at 400A MeV and La-La collisions at 250A MeV
Triple-differential cross sections for neutrons from high-multiplicity La-La
collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per
nucleon were measured at several polar angles as a function of the azimuthal
angle with respect to the reaction plane of the collision. The reaction plane
was determined by a transverse-velocity method with the capability of
identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons
was extracted from the slope at mid-rapidity of the curve of the average
in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the
participant neutrons was observed in a direction normal to the reaction plane
in the normalized momentum coordinates in the center-of-mass system.
Experimental results of the neutron squeeze-out were compared with BUU
calculations. The polar-angle dependence of the maximum azimuthal anisotropy
ratio was found to be insensitive to the mass of the colliding
nuclei and the beam energy. Comparison of the observed polar-angle dependence
of the maximum azimuthal anisotropy ratio with BUU calculations for
free neutrons revealed that is insensitive also to the
incompressibility modulus in the nuclear equation of state.Comment: ReVTeX, 16 pages, 17 figures. To be published in Physical Review
Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration
Peatlands have been subject to artificial drainage for centuries. This drainage has been in response to agricultural demand, forestry, horticultural and energy properties of peat and alleviation of flood risk. However, the are several environmental problems associated with drainage of peatlands. This paper describes the nature of these problems and examines the evidence for changes in hydrological and hydrochemical processes associated with these changes. Traditional black-box water balance approaches demonstrate little about wetland dynamics and therefore the science of catchment response to peat drainage is poorly understood. It is crucial that a more process-based approach be adopted within peatland ecosystems. The environmental problems associated with peat drainage have led, in part, to a recent reversal in attitudes to peatlands and we have seen a move towards wetland restoration. However, a detailed understanding of hydrological, hydrochemical and ecological process-interactions will be fundamental if we are to adequately restore degraded peatlands, preserve those that are still intact and understand the impacts of such management actions at the catchment scale
- …