77 research outputs found
Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients:A Prospective Cohort Study
Arsenic is toxic to many organ systems, the kidney being the most sensitive target organ. We aimed to investigate whether, in kidney transplant recipients (KTRs), the nephrotoxic exposure to arsenic could represent an overlooked hazard for graft survival. We performed a prospective cohort study of 665 KTRs with a functional graft >= 1 year, recruited in a university setting (20082011), in The Netherlands. Plasma arsenic was measured by ICP-MS, and dietary intake was comprehensively assessed using a validated 177-item food-frequency questionnaire. The endpoint graft failure was defined as restart of dialysis or re-transplantation. Median arsenic concentration was 1.26 (IQR, 1.042.04) mu g/L. In backwards linear regression analyses we found that fish consumption (std beta = 0.26; p < 0.001) was the major independent determinant of plasma arsenic. During 5 years of follow-up, 72 KTRs developed graft failure. In Cox proportional-hazards regression analyses, we found that arsenic was associated with increased risk of graft failure (HR 1.80; 95% CI 1.28-2.53; p = 0.001). This association remained materially unaltered after adjustment for donor and recipient characteristics, immunosuppressive therapy, eGFR, primary renal disease, and proteinuria. In conclusion, in KTRs, plasma arsenic is independently associated with increased risk of late graft failure.Top Institute Food and Nutrition of the Netherlands
A-1003
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
F 7219011
High-risk HPV infection after five years in a population-based cohort of Chilean women
<p>Abstract</p> <p>Background</p> <p>The need to review cervical cancer prevention strategies has been triggered by the availability of new prevention tools linked to human papillomavirus (HPV): vaccines and screening tests. To consider these innovations, information on HPV type distribution and natural history is necessary. This is a five-year follow-up study of gynecological high-risk (HR) HPV infection among a Chilean population-based cohort of women.</p> <p>Findings</p> <p>A population-based random sample of 969 women from Santiago, Chile aged 17 years or older was enrolled in 2001 and revisited in 2006. At both visits they answered a survey on demographics and sexual history and provided a cervical sample for HPV DNA detection (GP5+/6+ primer-mediated PCR and Reverse line blot genotyping). Follow-up was completed by 576 (59.4%) women; 45 (4.6%) refused participation; most losses to follow-up were women who were unreachable, no longer eligible or had missing samples. HR-HPV prevalence increased by 43%. Incidence was highest in women < 20 years of age (19.4%) and lowest in women > 70 (0%); it was three times higher among women HR-HPV positive versus HPV negative at baseline (25.5% and 8.3%; OR 3.8, 95% CI 1.8-8.0). Type-specific persistence was 35.3%; it increased with age, from 0% in women < 30 years of age to 100% in women > 70. An enrollment Pap result ASCUS or worse was the only risk factor for being HR-HPV positive at both visits.</p> <p>Conclusions</p> <p>HR-HPV prevalence increased in the study population. All HR-HPV infections in women < 30 years old cleared, supporting the current recommendation of HR-HPV screening for women > 30 years.</p
Impact of common cardio-metabolic risk factors on fatal and non-fatal cardiovascular disease in Latin America and the Caribbean: An individual-level pooled analysis of 31 cohort studies
Background: Estimates of the burden of cardio-metabolic risk factors in Latin America and the Caribbean (LAC) rely on relative risks (RRs) from non-LAC countries. Whether these RRs apply to LAC remains unknown. Methods: We pooled LAC cohorts. We estimated RRs per unit of exposure to body mass index (BMI), systolic blood pressure (SBP), fasting plasma glucose (FPG), total cholesterol (TC) and non-HDL cholesterol on fatal (31 cohorts, n=168,287) and non-fatal (13 cohorts, n=27,554) cardiovascular diseases, adjusting for regression dilution bias. We used these RRs and national data on mean risk factor levels to estimate the number of cardiovascular deaths attributable to non-optimal levels of each risk factor. Results: Our RRs for SBP, FPG and TC were like those observed in cohorts conducted in high-income countries; however, for BMI, our RRs were consistently smaller in people below 75 years of age. Across risk factors, we observed smaller RRs among older ages. Non-optimal SBP was responsible for the largest number of attributable cardiovascular deaths ranging from 38 per 100,000 women and 54 men in Peru, to 261 (Dominica, women) and 282 (Guyana, men). For non-HDL cholesterol, the lowest attributable rate was for women in Peru (21) and men in Guatemala (25), and the largest in men (158) and women (142) from Guyana. Interpretation: RRs for BMI from studies conducted in high-income countries may overestimate disease burden metrics in LAC; conversely, RRs for SBP, FPG and TC from LAC cohorts are similar to those estimated from cohorts in high-income countries. Funding: Wellcome Trust (214185/Z/18/Z)Fil: Carrillo Larco, Rodrigo M.. Imperial College London; Reino UnidoFil: Stern, Dalia. Instituto Nacional de Salud Publica (insp);Fil: Hambleton, Ian R.. The University Of The West Indies; BarbadosFil: Hennis, Anselm. Pan American Health Organization; Estados UnidosFil: Cesare, Mariachiara Di. Middlesex University; Reino UnidoFil: Lotufo, Paulo. Universidade de Sao Paulo; BrasilFil: Ferreccio, Catterina. Pontificia Universidad Católica de Chile; ChileFil: Irazola, Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Perel, Pablo. London School of Hygiene and Tropical Medicine; Reino UnidoFil: Gregg, Edward W. Imperial College London; Reino UnidoFil: Miranda, J. Jaime. Universidad Peruana Cayetano Heredia; PerúFil: Ezzati, Majid. Imperial College London; Reino UnidoFil: Danaei, Goodarz. Harvard Medical School; Estados UnidosFil: Aguilar Salinas, Carlos A.. Instituto Nacional de Ciencias Médicas y Nutrición; MéxicoFil: Alvarez Váz, Ramón. Universidad de la República; UruguayFil: Amadio, Marselle B.. Centro Universitario Senac Santo Amaro; BrasilFil: Baccino, Cecilia. Universidad de la República; UruguayFil: Bambs, Claudia. Pontificia Universidad Católica de Chile; ChileFil: Bastos, João Luiz. Universidade Federal de Santa Catarina; BrasilFil: Beckles, Gloria. Centers for Disease Control and Prevention; Estados UnidosFil: Bernabe Ortiz, Antonio. Universidad Peruana Cayetano Heredia; PerúFil: Bernardo, Carla DO. University of Adelaide; AustraliaFil: Bloch, Katia V.. Universidade Federal do Rio de Janeiro; BrasilFil: Blümel, Juan E.. Universidad de Chile; ChileFil: Boggia, Jose G.. Universidad de la República; UruguayFil: Borges, Pollyanna K.. Universidade Estadual do Ponta Grossa; BrasilFil: Bravo, Miguel. MELISA Institute; ChileFil: Brenes Camacho, Gilbert. Universidad de Costa Rica; Costa RicaFil: Carbajal, Horacio A.. Universidad Nacional de La Plata; ArgentinaFil: Castillo Rascón, María Susana. Universidad Nacional de Misiones; Argentin
Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment
Background: High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four cardiometabolic risk factors for all countries and regions from 1980 to 2010. Methods: We used data for exposure to risk factors by country, age group, and sex from pooled analyses of population-based health surveys. We obtained relative risks for the effects of risk factors on cause-specific mortality from meta-analyses of large prospective studies. We calculated the population attributable fractions for each risk factor alone, and for the combination of all risk factors, accounting for multicausality and for mediation of the effects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specific population attributable fractions by the number of disease-specific deaths. We obtained cause-specific mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the final estimates. Findings: In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After accounting for multicausality, 63% (10·8 million deaths, 95% CI 10·1-11·5) of deaths from these diseases in 2010 were attributable to the combined effect of these four metabolic risk factors, compared with 67% (7·1 million deaths, 6·6-7·6) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country level, age-standardised death rates from these diseases attributable to the combined effects of these four risk factors surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France, Japan, the Netherlands, Singapore, South Korea, and Spain. Interpretation: The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of the 21st century are high blood pressure and an increasing effect of obesity and diabetes. The mortality burden of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the global response to non-communicable diseases. Funding: UK Medical Research Council, US National Institutes of Health. © 2014 Elsevier Ltd
Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c
Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance
Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: A pooled analysis of 1018 population-based measurement studies with 88.6 million participants
© The Author(s) 2018. Background: Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. Methods: We pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20-29 years to 70-79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probittransformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. Results: In 2005-16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the highincome Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Conclusions: Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe
Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants
Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We
estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from
1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories.
Methods We used data from 3663 population-based studies with 222 million participants that measured height and
weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate
trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children
and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the
individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference)
and obesity (BMI >2 SD above the median).
Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in
11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed
changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and
140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of
underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and
countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior
probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse
was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of
thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a
posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%)
with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and
obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for
both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such
as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged
children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls
in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and
42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents,
the increases in double burden were driven by increases in obesity, and decreases in double burden by declining
underweight or thinness.
Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an
increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy
nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of
underweight while curbing and reversing the increase in obesit
- …