435 research outputs found

    The evolution of Bernstein modes in quantum wires with increasing deviation from parabolic confinement

    Full text link
    We investigate the evolution of the interaction of the magnetoplasmon resonance with the harmonics of the cyclotron resonance as the confinement of an electron gas in a quantum wire increasingly deviates from the parabolic case. The occurrence of the Bernstein modes is observed in a time-dependent Hartree model of a two-dimensional electron gas in a single quantum wire.Comment: 9 pages, 4 figures, uses IOP macros, to appear in the Journal of Physics: Condensed Matte

    Current and Spin-Torque in Double Tunnel Barrier Ferromagnet - Superconductor - Ferromagnet Systems

    Full text link
    We calculate the current and the spin-torque in small symmetric double tunnel barrier ferromagnet - superconductor - ferromagnet (F-S-F) systems. Spin-accumulation on the superconductor governs the transport properties when the spin-flip relaxation time is longer than the transport dwell time. In the elastic transport regime, it is demonstrated that the relative change in the current (spin-torque) for F-S-F systems equals the relative change in the current (spin-torque) for F-N-F systems upon changing the relative magnetization direction of the two ferromagnets. This differs from the results in the inelastic transport regime where spin-accumulation suppresses the superconducting gap and dramatically changes the magnetoresistance [S. Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999)]. The experimental relevance of the elastic and inelastic transport regimes, respectively, as well as the reasons for the change in the transport properties are discussed.Comment: 7 page

    Spin Injection in Quantum Wells with Spatially Dependent Rashba Interaction

    Full text link
    We consider Rashba spin-orbit effects on spin transport driven by an electric field in semiconductor quantum wells. We derive spin diffusion equations that are valid when the mean free path and the Rashba spin-orbit interaction vary on length scales larger than the mean free path in the weak spin-orbit coupling limit. From these general diffusion equations, we derive boundary conditions between regions of different spin-orbit couplings. We show that spin injection is feasible when the electric field is perpendicular to the boundary between two regions. When the electric field is parallel to the boundary, spin injection only occurs when the mean free path changes within the boundary, in agreement with the recent work by Tserkovnyak et al. [cond-mat/0610190].Comment: 7 pages, 1 figur

    The effects of compressible and incompressible states on the FIR-absorption of quantum wires and dots in a magnetic field

    Full text link
    We investigate the effects of compressible and incompressible states on the FIR-absorption of quantum wires and dots in a homogeneous perpendicular magnetic field. The electron-electron interaction is treated in the Hartree approximation at a finite low temperature. The calculated dispersion of the collective excitations reproduces several experimental results.Comment: To be published by Physica Scripta in the proceedings of the 17NSM. 6 pages in LaTeX + 6 postscript figure

    Current-driven skyrmion Depinning in Magnetic Granular Films

    Full text link
    We consider current-driven motion of magnetic skyrmions in granular magnetic films. The study uses micromagnetic modeling and phenomenological analysis based on the Thiele formalism. Remarkably, disorder enhances the effective skyrmion Hall effect that depends on the magnitude of the driving force (current density and non-adiabaticity parameter). The origin is sliding motion of the skyrmion along the grain boundaries, followed by pinning and depinning at the grain junctions. A side-jump can occur during this depinning process. In addition, the critical current that triggers the skyrmion motion depends on the relative size of the crystallites with respect to the skyrmion size. Finally, when the skyrmion trajectory is confined along an edge by the non-adiabatic Magnus force, the critical current density can be significantly reduced. Our results imply that narrow nanowires have higher skyrmion mobilities.Comment: 8 pages, 7 figure

    Bulk and edge spin transport in topological magnon insulators

    Full text link
    We investigate the spin transport properties of a topological magnon insulator, a magnetic insulator characterized by topologically nontrivial bulk magnon bands and protected magnon edge modes located in the bulk band gaps. Employing the Landau-Lifshitz-Gilbert phenomenology, we calculate the spin current driven through a normal metal∣|topological magnon insulator∣|normal metal heterostructure by a spin accumulation imbalance between the metals, with and without random lattice defects. We show that bulk and edge transport are characterized by different length scales. This results in a characteristic system size where the magnon transport crosses over from being bulk-dominated for small systems to edge-dominated for larger systems. These findings are generic and relevant for topological transport in systems of nonconserved bosons.Comment: 5 pages, 5 figures, 3 pages Supplemental Material with 2 additional figure
    • …
    corecore