361 research outputs found

    Solutions to axion electrodynamics in various geometries

    Get PDF
    Recently there has been a surge of new experimental proposals to search for ultralight axion dark matter with axion mass, m_{a}≲1  μeV. Many of these proposals search for small oscillating magnetic fields induced in or around a large static magnetic field. Lately, there has been interest in alternate detection schemes which search for oscillating electric fields in a similar setup. In this paper, we explicitly solve Maxwell’s equations in a simplified geometry and demonstrate that in this mass range, the axion-induced electric fields are heavily suppressed by boundary conditions. Unfortunately, experimentally measuring axion-induced electric fields is not feasible in this mass regime using the currently proposed setups with static primary fields. We show that at larger axion masses, induced electric fields are not suppressed, but boundary effects may still be relevant for an experiment’s sensitivity. We then make a general argument about a generic detector configuration with a static magnetic field to show that the electric fields are always suppressed in the limit of large wavelength.National Science Foundation (U.S.) (Award No. 1806440

    The effects of space radiation on thin films of YBa2Cu3O(sub 7-x)

    Get PDF
    This investigation had two objectives: (1) to determine the effects of space radiation on superconductor parameters that are most important in space applications; and (2) to determine whether this effect can be simulated with Co-60 gamma rays, the standard test method for space materials. Thin films of yttrium barium copper oxide (YBCO) were formed by coevaporation of Y, BaF2, and Cu and post-annealing in wet oxygen at 850 C for 3.5 h. The substrate used was (100) silicon with an evaporated zirconia buffer layer. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were the zero resistance transition temperature (T sub c) and the room temperature resistance. The samples were then exposed to Co-60 gamma-rays in air and in pure nitrogen, and to 780 keV electrons, in air. The parameters were then remeasured. The results are summarized. The results indicate little or no degradation in the parameters measured for samples exposed up to 10 Mrads of gamma-rays in nitrogen. However, complete degradation of samples exposed to 10-Mrad in air was observed. This degradation is preliminarily attributed to the high level of ozone generated in the chamber by the gamma-ray interaction with air. It can be concluded that: (1) the electron component of space radiation does not degrade the critical temperature of the YBCO films described, at least for energies around 800 keV and doses similar to those received by surface materials on spacecraft in typical remote sensing missions; and (2) for qualifying this and other superconducting materials against the space-radiation threat the standard test method in the aerospace industry, namely, exposure to Co-60 gamma-rays in air, may require some further investigation. As a minimum, the sample must be either in vacuum or in positive nitrogen pressure

    The effects of space radiation on thin films of YBa2Cu3O(7-x)

    Get PDF
    This investigation had two objectives: (1) to determine the effects of space radiation on superconductor parameters that are most important in space applications; and (2) to determine whether this effect can be simulated with Co-60 gamma rays, the standard test method for space materials. Thin films of yttrium barium copper oxide (YBCO) were formed by coevaporation of Y, BaF2, and Cu and post-annealing in wet oxygen at 850 C for 3.5 h. The substrate used was (100) silicon with an evaporated zirconia buffer layer. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were the zero resistance transition temperature T(sub c) and the room temperature resistance. The samples were then exposed to Co-60 gamma-rays in air and in pure nitrogen, and to 780 keV electrons, in air. The parameters were then remeasured. The results are summarized. The results indicate little or no degradation in the parameters measured for samples exposed up to 10 Mrads of gamma-rays in nitrogen. However, complete degradation is preliminarily attributed to the high level of ozone generated in the chamber by the gamma-ray interaction with air. It can be concluded that: (1) the electron component of space radiation does not degrade the critical temperature of the YBCO films described, at least for energies around 800 keV and doses similar to those received by surface materials on spacecraft in typical remote sensing missions; and (2) for qualifying this and other superconducting materials against the space-radiation threat the standard test method used in the aerospace industry, namely, exposure to Co-60 gamma-rays in air, may require some further investigation. As a minimum, the sample must be either in vacuum or in positive nitrogen pressure

    The effect of temperature cycling typical of low earth orbit satellites on thin films of YBa2Cu3O(7-x)

    Get PDF
    The refrigeration of superconductors in space poses a challenging problem. The problem could be less severe if superconducting materials would not have to be cooled when not in use. Thin films of the YBa2Cu3O(7-x) (YBCO) superconductor were subjected to thermal cycling, which was carried out to simulate a large number of eclipses of a low earth orbit satellite. Electrical measurements were performed to find the effect of the temperature cycling. Thin films of YBCO were formed by coevaporation of Y, BaF2, and Cu and postannealing in wet oxygen at 850 C for 3.5 h. The substrates used were (100) SrTiO3, polycrystalline alumina, and oxidized silicon; the last two have an evaporated zirconia layer. Processing and microstructure studies of these types of films have been published. THe zero resistance transition temperatures of the samples used in this study were 91, 82, and 86 K, respectively. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were: the zero resistance transition temperature, the 10 to 90 percent transition width, and the room temperature resistance, normalized to that measured before temperature cycling. The results for two samples are presented. Each sample had a cumulative exposure. Cycling in atmospheric pressure nitrogen was performed at a rate of about 60 cycles per day, whereas in vacuum the rate was only about 10 cycles per day. The results indicate only little or no changes in the parameters measured. Degradation of superconducting thin films of YBCO has been reported due to storage in nitrogen. It is believed that the relatively good performance of films after temperature cycling is related to the fact that BaF2 was used as an evaporation source. The latest result on extended temperature cycling indicates significant degradation. Further tests of extended cycling will be carried out to provide additional data and to clarify this preliminary finding

    Antenna sunshield membrane

    Get PDF
    An RF-transparent sunshield membrane covers an antenna reflector such as a parabolic dish. The blanket includes a single dielectric sheet of polyimide film 1/2-mil thick. The surface of the film facing away from the reflector is coated with a transparent electrically conductive coating such as vapor-deposited indium-tin oxide. The surface of the film facing the reflector is reinforced by an adhesively attached polyester or glass mesh, which in turn is coated with a white paint. In a particular embodiment of the invention, polyurethane paint is used. In another embodiment of the invention, a layer of paint primer is applied to the mesh under a silicone paint, and the silicone paint is cured after application for several days at room temperature to enhance adhesion to the primer

    Роль генетических факторов в развитии бронхиальной астмы у детей

    Get PDF
    We assessed a contribution of genetic factors to the bronchial asthma development in children basing on the genealogy analysis of 302 asthmatic children. It was dem onstrated that the inherited factors play the principal role in the disease occurrence providing by the additive action of polygens.The genetic predisposing markers of bronchial asthma were revealed in Russian children (alleles HLA DRB1 ) and their distribution was investigated in the families burdened by the disease. This information could be used to form the high-risk groups for the bronchial asthma development and to predict its occurrence in the families.На основе анализа родословных 302 детей с бронхиальной астмой проведена оценка вклада генетических факторов в развитие заболевания у детей; показано, что наследственным факторам принадлежит определяющая роль в формировании болезни, при этом генетическая составляющая обеспечивается преимущественно за счет аддитивного действия полигенов.Выявлены генетические маркеры предрасположенности к развитию бронхиальной астмы и ее отдельных форм у детей российской популяции (аллели HLA DRB1), изучен характер распределения этих маркеров в семьях с накоплением заболевания, что может быть использовано для выявления групп повышенного риска развития болезни, а также ее прогнозирования в семьях

    Low power arcjet system spacecraft impacts

    Get PDF
    Application of electrothermal arcjets on communications satellites requires assessment of integration concerns identified by the user community. Perceived risks include plume contamination of spacecraft materials, induced arcing or electrostatic discharges between differentially charged spacecraft surfaces, and conducted and radiated electromagnetic interference (EMI) for both steady state and transient conditions. A Space Act agreement between Martin Marietta Astro Space, the Rocket Research Company, and NASA's Lewis Research Center was established to experimentally examine these issues. Spacecraft materials were exposed to an arcjet plume for 40 hours, representing 40 weeks of actual spacecraft life, and contamination was characterized by changes in surface properties. With the exception of the change in emittance of one sample, all measurable changes in surface properties resulted in acceptable end of life characteristics. Charged spacecraft samples were benignly and consistently reduced to ground potential during exposure to the powered arcjet plume, suggesting that the arcjet could act as a charge control device on spacecraft. Steady state EMI signatures obtained using two different power processing units were similar to emissions measured in a previous test. Emissions measured in UHF, S, C, Ku and Ka bands obtained a null result which verified previous work in the UHF, S, and C bands. Characteristics of conducted and radiated transient emissions appear within standard spacecraft susceptibility criteria

    Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype

    Get PDF
    We demonstrate CRISPR-Cas9–mediated correction of a Fah mutation in hepatocytes in a mouse model of the human disease hereditary tyrosinemia. Delivery of components of the CRISPR-Cas9 system by hydrodynamic injection resulted in initial expression of the wild-type Fah protein in ~1/250 liver cells. Expansion of Fah-positive hepatocytes rescued the body weight loss phenotype. Our study indicates that CRISPR-Cas9–mediated genome editing is possible in adult animals and has potential for correction of human genetic diseases.National Cancer Institute (U.S.) (Grant 2-PO1-CA42063)National Cancer Institute (U.S.) (Core Grant P30-CA14051)National Institutes of Health (U.S.) (Grant R01-CA133404)David H. Koch Institute for Integrative Cancer Research at MIT (Marie D. and Pierre Casimir-Lambert Fund)National Institutes of Health (U.S.) (Centers for Cancer Nanotechnology Excellence 5-U54-CA151884-04)MIT-Harvard Center of Cancer Nanotechnology ExcellenceNational Institutes of Health (U.S.) (1K99CA169512
    corecore