86 research outputs found

    Wavenumber Selection of Convection Rolls in a Box

    Get PDF
    The dynamics of two‐dimensional Rayleigh–Bénard convection rolls are studied in a finite layer with no‐slip, fixed temperature upper and lower boundaries and no‐slip insulating side walls. The dominant mechanism controlling the number of rolls seen in the layer is an instability concentrated near the side walls. This mechanism significantly narrows the band of stable wavenumbers although it can take a time comparable to the long (horizontal) diffusion time scale to operate

    Asymptotic dynamics of attractive-repulsive swarms

    Get PDF
    We classify and predict the asymptotic dynamics of a class of swarming models. The model consists of a conservation equation in one dimension describing the movement of a population density field. The velocity is found by convolving the density with a kernel describing attractive-repulsive social interactions. The kernel's first moment and its limiting behavior at the origin determine whether the population asymptotically spreads, contracts, or reaches steady-state. For the spreading case, the dynamics approach those of the porous medium equation. The widening, compactly-supported population has edges that behave like traveling waves whose speed, density and slope we calculate. For the contracting case, the dynamics of the cumulative density approach those of Burgers' equation. We derive an analytical upper bound for the finite blow-up time after which the solution forms one or more δ\delta-functions.Comment: 23 pages, 10 figures; revised version updates the analysis in sec. 2.1 and 2.2, and contains enhanced discussion of the admissible class of social interaction force

    Quantum Necking in Stressed Metallic Nanowires

    Full text link
    When a macroscopic metallic wire is subject to tensile stress, it necks down smoothly as it elongates. We show that nanowires with radii comparable to the Fermi wavelength display remarkably different behavior. Using concepts from fluid dynamics, a PDE for nanowire shape evolution is derived from a semiclassical energy functional that includes electron-shell effects. A rich dynamics involving movement and interaction of kinks connecting locally stable radii is found, and a new class of universal equilibrium shapes is predicted.Comment: 4 pages, 3 postscript figures. New result on universal equilibrium shape

    Agent-based and continuous models of hopper bands for the Australian plague locust: How resource consumption mediates pulse formation and geometry

    Get PDF
    Locusts are significant agricultural pests. Under favorable environmental conditions flightless juveniles may aggregate into coherent, aligned swarms referred to as hopper bands. These bands are often observed as a propagating wave having a dense front with rapidly decreasing density in the wake. A tantalizing and common observation is that these fronts slow and steepen in the presence of green vegetation. This suggests the collective motion of the band is mediated by resource consumption. Our goal is to model and quantify this effect. We focus on the Australian plague locust, for which excellent field and experimental data is available. Exploiting the alignment of locusts in hopper bands, we concentrate solely on the density variation perpendicular to the front. We develop two models in tandem; an agent-based model that tracks the position of individuals and a partial differential equation model that describes locust density. In both these models, locust are either stationary (and feeding) or moving. Resources decrease with feeding. The rate at which locusts transition between moving and stationary (and vice versa) is enhanced (diminished) by resource abundance. This effect proves essential to the formation, shape, and speed of locust hopper bands in our models. From the biological literature we estimate ranges for the ten input parameters of our models. Sobol sensitivity analysis yields insight into how the band's collective characteristics vary with changes in the input parameters. By examining 4.4 million parameter combinations, we identify biologically consistent parameters that reproduce field observations. We thus demonstrate that resource-dependent behavior can explain the density distribution observed in locust hopper bands. This work suggests that feeding behaviors should be an intrinsic part of future modeling efforts.Comment: 26 pages, 11 figures, 3 tables, 3 appendices with 1 figure; revised Introduction, Sec 1.1, and Discussion; cosmetic changes to figures; fixed typos and made clarifications throughout; results unchange

    Determination of Inter-Phase Line Tension in Langmuir Films

    Get PDF
    A Langmuir film is a molecularly thin film on the surface of a fluid; we study the evolution of a Langmuir film with two co-existing fluid phases driven by an inter-phase line tension and damped by the viscous drag of the underlying subfluid. Experimentally, we study an 8CB Langmuir film via digitally-imaged Brewster Angle Microscopy (BAM) in a four-roll mill setup which applies a transient strain and images the response. When a compact domain is stretched by the imposed strain, it first assumes a bola shape with two tear-drop shaped reservoirs connected by a thin tether which then slowly relaxes to a circular domain which minimizes the interfacial energy of the system. We process the digital images of the experiment to extract the domain shapes. We then use one of these shapes as an initial condition for the numerical solution of a boundary-integral model of the underlying hydrodynamics and compare the subsequent images of the experiment to the numerical simulation. The numerical evolutions first verify that our hydrodynamical model can reproduce the observed dynamics. They also allow us to deduce the magnitude of the line tension in the system, often to within 1%. We find line tensions in the range of 200-600 pN; we hypothesize that this variation is due to differences in the layer depths of the 8CB fluid phases.Comment: See (http://www.math.hmc.edu/~ajb/bola/) for related movie

    Phase transition curves for mesoscopic superconducting samples

    Full text link
    We compute the phase transition curves for mesoscopic superconductors. Special emphasis is given to the limiting shape of the curve when the magnetic flux is large. We derive an asymptotic formula for the ground state of the Schr\"odinger equation in the presence of large applied flux. The expansion is shown to be sensitive to the smoothness of the domain. The theoretical results are compared to recent experiments.Comment: 8 pages, 1 figur

    An Experimental Study of Micron-scale Droplet Aerosols Produced via Ultrasonic Atomization

    Get PDF
    In the last 10 years, laser-driven fusion experiments performed on atomic clusters of deuterium have shown a surprisingly high neutron yield per joule of input laser energy. Results indicate that the optimal cluster size for maximizing fusion events should be in the 0.01–μm diameter range, but an appropriate source of droplets of this size does not exist. In an attempt to meet this need, we use ultrasonic atomization to generate micron-scale droplet aerosols of high average density, and we have developed and refined a reliable droplet sizing technique based on Mie scattering. Harmonic excitation of the fluid in the MHz range yields an aerosol of droplets with diameters of a few microns. The droplet diameter distribution is well-peaked and the relationship between average droplet size and forcing frequency follows an inviscid scaling law, predictable by dimensional analysis and consistent with the linear theory for Faraday excitation of an infinitely deep fluid

    Factors shaping attitudes towards UK bank brands: An exploratory analysis of social media data

    Get PDF
    Social media provides a huge amount of data and rich market insight, and has changed the way customers interact with brands. This interaction is of great concern for any organisation as it transfers the power to shape brand image from advertisers to consumers. In light of the global financial crisis and the ensuing negative attitudes towards bank brands, this study has extracted 1176 comments on bank advertisements from the verified Facebook pages of 10 UK banks. These comments have been thematically analysed to identify seven key factors that shape customer attitudes to bank brands. The study presents the power of social media as a platform for brands and customers to engage and build relationships, especially bank–customer relationships in the UK, providing managers with important insights that can guide the development and execution of their brand-relationship campaigns. The fact that this study is based on real-life advertisements and real-life responses from social media network users can be considered as one of its strengths, as it does not suffer from various issues relating to experimental studies. Nonetheless, the study’s limitations and suggestions for future research directions are provided

    Using Ultrasonic Atomization to Produce an Aerosol of Micron-scale Particles

    Get PDF
    A device that uses ultrasonic atomization of a liquid to produce an aerosol of micron-scale droplets is described. This device represents a new approach to producing targets relevant to laser-driven fusion studies, and to rare studies of nonlinear optics in which wavelength-scale targets are irradiated. The device has also made possible tests of fluid dynamics models in a novel phase space. The distribution of droplet sizes produced by the device and the threshold power required for droplet production are shown to follow scaling laws predicted by fluid dynamics

    On the third critical field in Ginzburg-Landau theory

    Full text link
    Using recent results by the authors on the spectral asymptotics of the Neumann Laplacian with magnetic field, we give precise estimates on the critical field, HC3H_{C_3}, describing the appearance of superconductivity in superconductors of type II. Furthermore, we prove that the local and global definitions of this field coincide. Near HC3H_{C_3} only a small part, near the boundary points where the curvature is maximal, of the sample carries superconductivity. We give precise estimates on the size of this zone and decay estimates in both the normal (to the boundary) and parallel variables
    corecore