43,799 research outputs found
Clinical solutions: not always what they seem?
Brenner and colleagues, in their article published in Critical Care, showed elevated levels of the reactive carbonyl species (RCS) methylglyoxal (MG) in the circulation of patients with septic shock. We commend the authorsâ bravery in launching this molecule into a field well-populated with biomarkers and where clinical diagnosis persists as the âgold standardâ
Recommended from our members
Electron beam-induced current imaging with two-angstrom resolution.
An electron microscope's primary beam simultaneously ejects secondary electrons (SEs) from the sample and generates electron beam-induced currents (EBICs) in the sample. Both signals can be captured and digitized to produce images. The off-sample Everhart-Thornley detectors that are common in scanning electron microscopes (SEMs) can detect SEs with low noise and high bandwidth. However, the transimpedance amplifiers appropriate for detecting EBICs do not have such good performance, which makes accessing the benefits of EBIC imaging at high-resolution relatively more challenging. Here we report lattice-resolution imaging via detection of the EBIC produced by SE emission (SEEBIC). We use an aberration-corrected scanning transmission electron microscope (STEM), and image both microfabricated devices and standard calibration grids
Opioid Exposed Mothers and Infants in Delaware: Clinical and Legal Considerations
Drug use is on the rise in Delaware, as demonstrated by the continued increase in infants born with neonatal abstinence syndrome. Thoughful, evidence based, and coordinated approaches are necessary to impact this problem. There is solid evidence that mothers and infants who remain together have improved outcomes. Professional medical and nursing societies are unanimous in support of non-punitive approaches to care. Medical Professionals, legislators, and society in general would benefit from ongoing education on the addiction disease process in order to best care for the increasing number of mother/baby dyads with neonatal abstinence syndrome
High water availability increases the negative impact of a native hemiparasite on its non-native host
Environmental factors alter the impacts of parasitic plants on their hosts. However, there have been no controlled studies on how water availability modulates stem hemiparasites' effects on hosts. A glasshouse experiment was conducted to investigate the association between the Australian native stem hemiparasite Cassytha pubescens and the introduced host Ulex europaeus under high (HW) and low (LW) water supply. Cassytha pubescens had a significant, negative effect on the total biomass of U. europaeus, which was more severe in HW than LW. Regardless of watering treatment, infection significantly decreased shoot and root biomass, nodule biomass, nodule biomass per unit root biomass, F-v/F-m, and nitrogen concentration of U. europaeus. Host spine sodium concentration significantly increased in response to infection in LW but not HW conditions. Host water potential was significantly higher in HW than in LW, which may have allowed the parasite to maintain higher stomatal conductances in HW. In support of this, the delta C-13 of the parasite was significantly lower in HW than in LW (and significantly higher than the host). C. pubescens also had significantly higher F-v/F-m and 66% higher biomass per unit host in the HW compared with the LW treatment. The data suggest that the enhanced performance of C. pubescens in HW resulted in higher parasite growth rates and thus a larger demand for resources from the host, leading to poorer host performance in HW compared with LW. C. pubescens should more negatively affect U. europaeus growth under wet conditions rather than under dry conditions in the field
The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit
Recent ATLAS data significantly extend the exclusion limits for
supersymmetric particles. We examine the impact of such data on global fits of
the constrained minimal supersymmetric standard model (CMSSM) to indirect and
cosmological data. We calculate the likelihood map of the ATLAS search, taking
into account systematic errors on the signal and on the background. We validate
our calculation against the ATLAS determinaton of 95% confidence level
exclusion contours. A previous CMSSM global fit is then re-weighted by the
likelihood map, which takes a bite at the high probability density region of
the global fit, pushing scalar and gaugino masses up.Comment: 16 pages, 7 figures. v2 has bigger figures and fixed typos. v3 has
clarified explanation of our handling of signal systematic
Options for managing human threats to high seas biodiversity
Areas beyond national jurisdiction (ABNJ) constitute 61% of the world's oceans and are collectively managed by countries under the United Nations Convention on the Law of the Sea (UNCLOS). Growing concern regarding the deteriorating state of the oceans and ineffective management of ABNJ has resulted in negotiations to develop an international legally binding instrument (ILBI) for the conservation and sustainable use of biodiversity beyond national jurisdiction under UNCLOS. To inform these negotiations, we identified existing and emerging human activities and influences that affect ABNJ and evaluated management options available to mitigate the most pervasive, with highest potential for impact and probability of emergence. The highest-ranking activities and influences that affect ABNJ were fishing/hunting, maritime shipping, climate change and its associated effects, land-based pollution and mineral exploitation. Management options are diverse and available through a variety of actors, although their actions are not always effective. Area-based management tools (ABMTs), including marine protected areas (MPAs), were the only consistently effective option to mitigate impacts across high-ranked activities and influences. However, addressing land-based pollution will require national action to prevent this at its source, and MPAs offer only a partial solution for climate change. A new ABNJ ILBI could help unify management options and actors to conserve marine biodiversity and ensure sustainable use. Incorporating a mechanism to establish effective ABMTs into the ILBI will help deliver multiple objectives based on the ecosystem approach
Conceptual modelling: Towards detecting modelling errors in engineering applications
Rapid advancements of modern technologies put high demands on mathematical modelling of engineering systems. Typically, systems are no longer âsimpleâ objects, but rather coupled systems involving multiphysics phenomena, the modelling of which involves coupling of models that describe different phenomena. After constructing a mathematical model, it is essential to analyse the correctness of the coupled models and to detect modelling errors compromising the final modelling result. Broadly, there are two classes of modelling errors: (a) errors related to abstract modelling, eg, conceptual errors concerning the coherence of a model as a whole and (b) errors related to concrete modelling or instance modelling, eg, questions of approximation quality and implementation. Instance modelling errors, on the one hand, are relatively well understood. Abstract modelling errors, on the other, are not appropriately addressed by modern modelling methodologies. The aim of this paper is to initiate a discussion on abstract approaches and their usability for mathematical modelling of engineering systems with the goal of making it possible to catch conceptual modelling errors early and automatically by computer assistant tools. To that end, we argue that it is necessary to identify and employ suitable mathematical abstractions to capture an accurate conceptual description of the process of modelling engineering systems
Synthesis of Recursive ADT Transformations from Reusable Templates
Recent work has proposed a promising approach to improving scalability of
program synthesis by allowing the user to supply a syntactic template that
constrains the space of potential programs. Unfortunately, creating templates
often requires nontrivial effort from the user, which impedes the usability of
the synthesizer. We present a solution to this problem in the context of
recursive transformations on algebraic data-types. Our approach relies on
polymorphic synthesis constructs: a small but powerful extension to the
language of syntactic templates, which makes it possible to define a program
space in a concise and highly reusable manner, while at the same time retains
the scalability benefits of conventional templates. This approach enables
end-users to reuse predefined templates from a library for a wide variety of
problems with little effort. The paper also describes a novel optimization that
further improves the performance and scalability of the system. We evaluated
the approach on a set of benchmarks that most notably includes desugaring
functions for lambda calculus, which force the synthesizer to discover Church
encodings for pairs and boolean operations
Coherent states for compact Lie groups and their large-N limits
The first two parts of this article surveys results related to the
heat-kernel coherent states for a compact Lie group K. I begin by reviewing the
definition of the coherent states, their resolution of the identity, and the
associated Segal-Bargmann transform. I then describe related results including
connections to geometric quantization and (1+1)-dimensional Yang--Mills theory,
the associated coherent states on spheres, and applications to quantum gravity.
The third part of this article summarizes recent work of mine with Driver and
Kemp on the large-N limit of the Segal--Bargmann transform for the unitary
group U(N). A key result is the identification of the leading-order large-N
behavior of the Laplacian on "trace polynomials."Comment: Submitted to the proceeding of the CIRM conference, "Coherent states
and their applications: A contemporary panorama.
- âŠ