1,327 research outputs found
Prognostic significance of primary-tumor extension, stage and grade of nuclear differentiation in patients with renal cell carcinoma
Surgery remains the preferred therapy for renal cell carcinoma. The various adjunctive or complementary therapies currently yield disappointing results. Identifying reliable prognostic factors could help in selecting patients most likely to benefit from postoperative adjuvant therapies. We reviewed the surgical records of 78 patients who had undergone radical nephrectomy with lymphadenectomy for renal cell carcinoma, matched for type of operation and histology. According to staging (TNM), 5.1% of the patients were classified as stage I, 51.3% as stage II, 29.5% as stage III and 14.5% as stage IV. Of the 78 patients 40 were T2N0 and 21 T3aN0. Tumor grading showed that 39.7% of the patients had well-differentiated tumors(G1), 41.1% moderately-differentiated (G2), and 19.2% poorly-differentiated tumors (G3). Overall actuarial survival at 5 and 10 years was 100% for stage 1; 91.3% at 5 years and 83.1% at 10 years for stage II; 45.5% and 34.1% for stage III; and 29.1% and nil for stage IV (stage II vs stage III p = 0.0001). Patients with tumors confined to the kidney (pT2N0) had better 5- and 10-year survival rates than patients with tumors infiltrating the perirenal fat (pT3aN0) (p = 0.000006). Survival differed according to nuclear grading (G1 vs G3 ; p = 0.000005; G2 vs G3; p = 0.0009). In conclusion our review identified tumor stage, primary-tumor extension, and the grade of nuclear differentiation as reliable prognostic factors in patients with renal cell carcinomas
Reaction between quinone and thiazolidine. A study on the formation mechanism of new antiproliferative quinolindiones
Reaction between quinolinquinone and thiazolidine in basic medium was investigated. 2-Arylthiazolidine-4-carboxylic acid ethyl esters undergo two different cleavages in basic medium, yielding the 1-aryl-2-azadiene and a thiolic species. In the presence of quinolinquinone, the isomeric 1-aryl-3-ethoxycarbonyl-pyridoisoquinolin-5,10-diones and 3-amino-3-ethoxycarbonyl-dihydrothienoquinolin-
4,9-diones are formed by a hetero-Diels–Alder reaction and 1,4-Michael addition reaction, respectively. A mechanism for the formation of the reaction products is presented
Novel Anticancer Drug 5H-pyro[3,2-a] Phenoxazin-5-one (PPH) Regulates lncRNA HOTAIR and HOXC genes in Human MCF-7 Cells
Breast cancer in women is the second most commonly cancer, after skin cancer. The percentage of mortalityrisk for breast cancer is 1 in 37 women (2.7%), which makes breast cancer represent the second cause of cancerdeath in women. Recently, new research based on previously published work in systemic chemotherapy andendocrine therapy field, have improved the incidence rates. The quinonic nucleus is common to many naturaland synthetic products associated with anticancer and antibacterial activities, these compounds are typicallyDNA-intercalating agents. The Class I Homeobox genes (HOX in human and hox in mouse) control embryonicdevelopment and specific determination of positional identity anteroposterior axis of the human body. The HOXgenes, are 39 transcription factors related to morphological, physiological disease. It has been demonstratedthat any deregulation into the network is able to induce neoplastic transformation. Particularly, HOXC locuscollaborating with lncRNA HOTAIR play a key role in breast cancer.
In this study, our group evaluated the chemical and metabolic stability of new anticancer molecule 5H-pyro[3,2-a] phenoxazin-5-one (PPH). In a recent paper, we have already demonstrated that a new and potent anticancersynthetic iminoquinone, the 5H-pyrido[3,2-a]phenoxazin-5-one (PPH), is able to inhibit a large number oflymphoblastoid and solid-tumor-derived cells at submicromolar concentrations.
Based on our previous research, we decided to analyze the cytotoxic effect and capability of PPH to control thelncRNA HOTAIR and HOXC locus gene expression in human breast cancer cells MCF-7, in order to demonstrateits role like potential new breast cancer antitumor drug
Novel anticancer drug 5h-pyro[3,2-a] phenoxazin-5-one (PPH) regulates lncRNA HOTAIR and HOXC genes in human MCF-7 cells
Breast cancer in women is the second most commonly cancer, after skin cancer. The percentage of mortality risk for breast cancer is 1 in 37 women (2.7%), which makes breast cancer represent the second cause of cancer death in women. Recently, new research based on previously published work in systemic chemotherapy and endocrine therapy field, have improved the incidence rates. The quinonic nucleus is common to many natural and synthetic products associated with anticancer and antibacterial activities, these compounds are typically DNA-intercalating agents. The Class I Homeobox genes (HOX in human and hox in mouse) control embryonic development and specific determination of positional identity anteroposterior axis of the human body. The HOX genes, are 39 transcription factors related to morphological, physiological disease. It has been demonstrated that any deregulation into the network is able to induce neoplastic transformation. Particularly, HOXC locus collaborating with lncRNA HOTAIR play a key role in breast cancer. In this study, our group evaluated the chemical and metabolic stability of new anticancer molecule 5H-pyro[3,2-a] phenoxazin-5-one (PPH). In a recent paper, we have already demonstrated that a new and potent anticancer synthetic iminoquinone, the 5H-pyrido[3,2-a]phenoxazin-5-one (PPH), is able to inhibit a large number of lymphoblastoid and solid-tumor-derived cells at submicromolar concentrations. Based on our previous research, we decided to analyze the cytotoxic effect and capability of PPH to control the lncRNA HOTAIR and HOXC locus gene expression in human breast cancer cells MCF-7, in order to demonstrate its role like potential new breast cancer antitumor drug
JCV-specific T-cells producing IFN-gamma are differently associated with PmL occurrence in HIV patients and liver transplant recipients
Aim of this work was to investigate a possible correlation between the frequency of JCV-specific T-cells and PML occurrence in HIV-infected subjects and in liver transplant recipients. A significant decrease of JCV-specific T-cells was observed in HIV-PML subjects, highlighting a close relation between JCV-specific T-cell immune impairment and PML occurrence in HIV-subjects. Interestingly, liver-transplant recipients (LTR) showed a low frequency of JCV-specific T-cells, similar to HIV-PML subjects. Nevertheless, none of the enrolled LTR developed PML, suggesting the existence of different immunological mechanisms involved in the maintenance of a protective immune response in LT
Exploring the role of RNASET2 in the immune response of black soldier fly larvae
T2 RNases are transferase-type enzymes distributed across phyla, crucial for breaking down single-stranded RNA molecules. In addition to their canonical function, several T2 enzymes exhibit pleiotropic roles, contributing to various biological processes, such as the immune response in invertebrates and vertebrates. This study aims at characterizing RNASET2 in the larvae of black soldier fly (BSF), Hermetia illucens, which are used for organic waste reduction and the production of valuable insect biomolecules for feed formulation and other applications. Given the exposure of BSF larvae to pathogens present in the feeding substrate, it is likely that the mechanisms of their immune response have undergone significant evolution and increased complexity. After in silico characterization of HiRNASET2, demonstrating the high conservation of this T2 homolog, we investigated the expression pattern of the enzyme in the fat body and hemocytes, two districts mainly involved in the insect immune response, in larvae challenged with bacterial infection. While no variation in HiRNASET2 expression was observed in the fat body following infection, a significant upregulation of HiRNASET2 synthesis occurred in hemocytes shortly after the injection of bacteria in the larva. The intracellular localization of HiRNASET2 in lysosomes of plasmatocytes, its extracellular association with bacteria, and the presence of a putative antimicrobial domain in the molecule, suggest its potential role in RNA clean-up and as an alarm molecule promoting phagocytosis activation by hemocytes. These insights contribute to the characterization of the immune response of Hermetia illucens larvae and may facilitate the development of animal feedstuff enriched with highly valuable BSF bioactive compounds
Adaptive dose finding based ont-statistic for dose–response trials
The goals of phase II dose–response studies are to prove that the treatment is effective and to choose the dose for further development. Randomized designs with equal allocation to either a high dose and placebo or to each of several doses and placebo are typically used. However, in trials where response is observed relatively quickly, adaptive designs might offer an advantage over equal allocation. We propose an adaptive design for dose–response trials that concentrates the allocation of subjects in one or more areas of interest, for example, near a minimum clinically important effect level, or near some maximal effect level, and also allows for the possibility to stop the trial early if needed. The proposed adaptive design yields higher power to detect a dose–response relationship, higher power in comparison with placebo, and selects the correct dose more frequently compared with a corresponding randomized design with equal allocation to doses
Efficacy and safety of elinzanetant, a selective neurokinin-1,3 receptor antagonist for vasomotor symptoms: a dose-finding clinical trial (SWITCH-1)
OBJECTIVE: Neurokinin (NK)-3 and NK-1 receptors have been implicated in the etiology of vasomotor symptoms (VMS) and sleep disturbances associated with menopause. This phase 2b, adaptive, dose-range finding study aimed to assess the efficacy and safety of multiple doses of elinzanetant (NT-814), a selective NK-1,3 receptor antagonist, in women experiencing VMS associated with menopause, and investigate the impact of elinzanetant on sleep and quality of life. METHODS: Postmenopausal women aged 40 to 65 years who experienced seven or more moderate-to-severe VMS per day were randomized to receive elinzanetant 40, 80, 120, or 160 mg or placebo once daily using an adaptive design algorithm. Coprimary endpoints were reduction in mean frequency and severity of moderate-to-severe VMS at weeks 4 and 12. Secondary endpoints included patient-reported assessments of sleep and quality of life. RESULTS: Elinzanetant 120 mg and 160 mg achieved reductions in VMS frequency versus placebo from week 1 throughout 12 weeks of treatment. Least square mean reductions were statistically significant versus placebo at both primary endpoint time points for elinzanetant 120 mg (week 4: -3.93 [SE, 1.02], P \u3c 0.001; week 12: -2.95 [1.15], P = 0.01) and at week 4 for elinzanetant 160 mg (-2.63 [1.03]; P = 0.01). Both doses also led to clinically meaningful improvements in measures of sleep and quality of life. All doses of elinzanetant were well tolerated. CONCLUSIONS: Elinzanetant is an effective and well-tolerated nonhormone treatment option for postmenopausal women with VMS and associated sleep disturbance. Elinzanetant also improves quality of life in women with VMS
Melt-spun bioactive sutures containing nanohybrids for local delivery of anti-inflammatory drugs.
In this work, a novel concept is introduced in drug-eluting fibres to ensure a good control of drug delivery features and wide applicability to different bioactive compounds. Composite bioactive sutures based on fibre grade poly(ε-caprolactone) (PCL) and loaded with the anti-inflammatory drug Diclofenac (Dic) or a Dic nanohybrid where the drug is intercalated in a synthetic hydrotalcite (Mg/Al hydroxycarbonate) (HT-Dic) were developed. Fibres were prepared by melt-spinning at different PCL/HT-Dic/Dic ratios and analysed in terms of morphology, mechanical properties and drug release features. Results emphasized that tensile properties of fibres are clearly affected by Dic or HT-Dic addition, while the presence of knots has limited influence on the mechanical behaviour of the sutures. Release of Dic strongly depends on how Dic is loaded in the fibre (as free or nanohybrid) whereas the combination of free Dic and HT-Dic can allow a further tuning of release profile. In vivo experiments show a reduction of inflammatory responses associated with Dic-loaded fibers. Thus, a proof of principle is provided for a novel class of bioactive sutures integrating advanced controlled-release technologies
Direction distributions of neutrons and reference values of the personal dose equivalent in workplace fields
Within the EC project EVIDOS, double-differential (energy and direction) fluence spectra were determined by means of novel direction spectrometers. By folding the spectra with fluence-to-dose equivalent conversion coefficients, contributions to H*(10) for 14 directions, and values of the personal dose equivalent Hp(10) and the effective dose E for 6 directions of a person's orientation in the field were determined. The results of the measurements and calculations obtained within the EVIDOS project in workplace fields in nuclear installations in Europe, i.e., at Krümmel (boiling water reactor and transport cask), at Mol (Venus research reactor and fuel facility Belgonucléaire) and at Ringhals (pressurised reactor and transport cask) are presente
- …