855 research outputs found
Self-tuning of threshold for a two-state system
A two-state system (TSS) under time-periodic perturbations (to be regarded as
input signals) is studied in connection with self-tuning (ST) of threshold and
stochastic resonance (SR). By ST, we observe the improvement of signal-to-noise
ratio (SNR) in a weak noise region. Analytic approach to a tuning equation
reveals that SNR improvement is possible also for a large noise region and this
is demonstrated by Monte Carlo simulations of hopping processes in a TSS. ST
and SR are discussed from a little more physical point of energy transfer
(dissipation) rate, which behaves in a similar way as SNR. Finally ST is
considered briefly for a double-well potential system (DWPS), which is closely
related to the TSS
Noise Induced Complexity: From Subthreshold Oscillations to Spiking in Coupled Excitable Systems
We study stochastic dynamics of an ensemble of N globally coupled excitable
elements. Each element is modeled by a FitzHugh-Nagumo oscillator and is
disturbed by independent Gaussian noise. In simulations of the Langevin
dynamics we characterize the collective behavior of the ensemble in terms of
its mean field and show that with the increase of noise the mean field displays
a transition from a steady equilibrium to global oscillations and then, for
sufficiently large noise, back to another equilibrium. Diverse regimes of
collective dynamics ranging from periodic subthreshold oscillations to
large-amplitude oscillations and chaos are observed in the course of this
transition. In order to understand details and mechanisms of noise-induced
dynamics we consider a thermodynamic limit of the ensemble, and
derive the cumulant expansion describing temporal evolution of the mean field
fluctuations. In the Gaussian approximation this allows us to perform the
bifurcation analysis; its results are in good agreement with dynamical
scenarios observed in the stochastic simulations of large ensembles
Multifractal characterization of stochastic resonance
We use a multifractal formalism to study the effect of stochastic resonance
in a noisy bistable system driven by various input signals. To characterize the
response of a stochastic bistable system we introduce a new measure based on
the calculation of a singularity spectrum for a return time sequence. We use
wavelet transform modulus maxima method for the singularity spectrum
computations. It is shown that the degree of multifractality defined as a width
of singularity spectrum can be successfully used as a measure of complexity
both in the case of periodic and aperiodic (stochastic or chaotic) input
signals. We show that in the case of periodic driving force singularity
spectrum can change its structure qualitatively becoming monofractal in the
regime of stochastic synchronization. This fact allows us to consider the
degree of multifractality as a new measure of stochastic synchronization also.
Moreover, our calculations have shown that the effect of stochastic resonance
can be catched by this measure even from a very short return time sequence. We
use also the proposed approach to characterize the noise-enhanced dynamics of a
coupled stochastic neurons model.Comment: 10 pages, 21 EPS-figures, RevTe
Excitable elements controlled by noise and network structure
We study collective dynamics of complex networks of stochastic excitable
elements, active rotators. In the thermodynamic limit of infinite number of
elements, we apply a mean-field theory for the network and then use a Gaussian
approximation to obtain a closed set of deterministic differential equations.
These equations govern the order parameters of the network. We find that a
uniform decrease in the number of connections per element in a homogeneous
network merely shifts the bifurcation thresholds without producing qualitative
changes in the network dynamics. In contrast, heterogeneity in the number of
connections leads to bifurcations in the excitable regime. In particular we
show that a critical value of noise intensity for the saddle-node bifurcation
decreases with growing connectivity variance. The corresponding critical values
for the onset of global oscillations (Hopf bifurcation) show a non-monotone
dependency on the structural heterogeneity, displaying a minimum at moderate
connectivity variances.Comment: 13 pages, 6 figure
Predicting the coherence resonance curve using a semi-analytical treatment
Emergence of noise induced regularity or Coherence Resonance in nonlinear
excitable systems is well known. We explain theoretically why the normalized
variance () of inter spike time intervals, which is a measure of
regularity in such systems, has a unimodal profile. Our semi-analytic treatment
of the associated spiking process produces a general yet simple formula for
, which we show is in very good agreement with numerics in two test
cases, namely the FitzHugh-Nagumo model and the Chemical Oscillator model.Comment: 5 pages, 5 figure
The plasma separator ion engine summary report, apr. 1, 1963 - jun. 30, 1964
Plasma separator ion engin
Collective dynamics of two-mode stochastic oscillators
We study a system of two-mode stochastic oscillators coupled through their
collective output. As a function of a relevant parameter four qualitatively
distinct regimes of collective behavior are observed. In an extended region of
the parameter space the periodicity of the collective output is enhanced by the
considered coupling. This system can be used as a new model to describe
synchronization-like phenomena in systems of units with two or more oscillation
modes. The model can also explain how periodic dynamics can be generated by
coupling largely stochastic units. Similar systems could be responsible for the
emergence of rhythmic behavior in complex biological or sociological systems.Comment: 4 pages, RevTex, 5 figure
Impact of AIRS Thermodynamic Profiles on Precipitation Forecasts for Atmospheric River Cases Affecting the Western United States
No abstract availabl
- …