855 research outputs found

    Self-tuning of threshold for a two-state system

    Full text link
    A two-state system (TSS) under time-periodic perturbations (to be regarded as input signals) is studied in connection with self-tuning (ST) of threshold and stochastic resonance (SR). By ST, we observe the improvement of signal-to-noise ratio (SNR) in a weak noise region. Analytic approach to a tuning equation reveals that SNR improvement is possible also for a large noise region and this is demonstrated by Monte Carlo simulations of hopping processes in a TSS. ST and SR are discussed from a little more physical point of energy transfer (dissipation) rate, which behaves in a similar way as SNR. Finally ST is considered briefly for a double-well potential system (DWPS), which is closely related to the TSS

    Noise Induced Complexity: From Subthreshold Oscillations to Spiking in Coupled Excitable Systems

    Full text link
    We study stochastic dynamics of an ensemble of N globally coupled excitable elements. Each element is modeled by a FitzHugh-Nagumo oscillator and is disturbed by independent Gaussian noise. In simulations of the Langevin dynamics we characterize the collective behavior of the ensemble in terms of its mean field and show that with the increase of noise the mean field displays a transition from a steady equilibrium to global oscillations and then, for sufficiently large noise, back to another equilibrium. Diverse regimes of collective dynamics ranging from periodic subthreshold oscillations to large-amplitude oscillations and chaos are observed in the course of this transition. In order to understand details and mechanisms of noise-induced dynamics we consider a thermodynamic limit NN\to\infty of the ensemble, and derive the cumulant expansion describing temporal evolution of the mean field fluctuations. In the Gaussian approximation this allows us to perform the bifurcation analysis; its results are in good agreement with dynamical scenarios observed in the stochastic simulations of large ensembles

    Multifractal characterization of stochastic resonance

    Full text link
    We use a multifractal formalism to study the effect of stochastic resonance in a noisy bistable system driven by various input signals. To characterize the response of a stochastic bistable system we introduce a new measure based on the calculation of a singularity spectrum for a return time sequence. We use wavelet transform modulus maxima method for the singularity spectrum computations. It is shown that the degree of multifractality defined as a width of singularity spectrum can be successfully used as a measure of complexity both in the case of periodic and aperiodic (stochastic or chaotic) input signals. We show that in the case of periodic driving force singularity spectrum can change its structure qualitatively becoming monofractal in the regime of stochastic synchronization. This fact allows us to consider the degree of multifractality as a new measure of stochastic synchronization also. Moreover, our calculations have shown that the effect of stochastic resonance can be catched by this measure even from a very short return time sequence. We use also the proposed approach to characterize the noise-enhanced dynamics of a coupled stochastic neurons model.Comment: 10 pages, 21 EPS-figures, RevTe

    Excitable elements controlled by noise and network structure

    Full text link
    We study collective dynamics of complex networks of stochastic excitable elements, active rotators. In the thermodynamic limit of infinite number of elements, we apply a mean-field theory for the network and then use a Gaussian approximation to obtain a closed set of deterministic differential equations. These equations govern the order parameters of the network. We find that a uniform decrease in the number of connections per element in a homogeneous network merely shifts the bifurcation thresholds without producing qualitative changes in the network dynamics. In contrast, heterogeneity in the number of connections leads to bifurcations in the excitable regime. In particular we show that a critical value of noise intensity for the saddle-node bifurcation decreases with growing connectivity variance. The corresponding critical values for the onset of global oscillations (Hopf bifurcation) show a non-monotone dependency on the structural heterogeneity, displaying a minimum at moderate connectivity variances.Comment: 13 pages, 6 figure

    Predicting the coherence resonance curve using a semi-analytical treatment

    Full text link
    Emergence of noise induced regularity or Coherence Resonance in nonlinear excitable systems is well known. We explain theoretically why the normalized variance (VNV_{N}) of inter spike time intervals, which is a measure of regularity in such systems, has a unimodal profile. Our semi-analytic treatment of the associated spiking process produces a general yet simple formula for VNV_{N}, which we show is in very good agreement with numerics in two test cases, namely the FitzHugh-Nagumo model and the Chemical Oscillator model.Comment: 5 pages, 5 figure

    Collective dynamics of two-mode stochastic oscillators

    Full text link
    We study a system of two-mode stochastic oscillators coupled through their collective output. As a function of a relevant parameter four qualitatively distinct regimes of collective behavior are observed. In an extended region of the parameter space the periodicity of the collective output is enhanced by the considered coupling. This system can be used as a new model to describe synchronization-like phenomena in systems of units with two or more oscillation modes. The model can also explain how periodic dynamics can be generated by coupling largely stochastic units. Similar systems could be responsible for the emergence of rhythmic behavior in complex biological or sociological systems.Comment: 4 pages, RevTex, 5 figure
    corecore