8,879 research outputs found

    Effective phase description of noise-perturbed and noise-induced oscillations

    Full text link
    An effective description of a general class of stochastic phase oscillators is presented. For this, the effective phase velocity is defined either by invariant probability density or via first passage times. While the first approach exhibits correct frequency and distribution density, the second one yields proper phase resetting curves. Their discrepancy is most pronounced for noise-induced oscillations and is related to non-monotonicity of the phase fluctuations

    Symmetric Brownian motor

    Get PDF
    In this paper we present a model of a symmetric Brownian motor (SBM) which changes the sign of its velocity when the temperature gradient is inverted. The velocity, external work and efficiency are studied as a function of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when another parameter (a phase shift) is varied. Analytical predictions and results from numerical simulations are performed and agree very well. Generic properties of this type of motors are discussed.Comment: 8 pages and 10 figure

    Geometric scaling of purely-elastic flow instabilities

    Full text link
    We present a combined experimental, numerical and theoretical investigation of the geometric scaling of the onset of a purely-elastic flow instability in a serpentine channel. Good qualitative agreement is obtained between experiments, using dilute solutions of flexible polymers in microfluidic devices, and two-dimensional numerical simulations using the UCM model. The results are confirmed by a simple theoretical analysis, based on the dimensionless criterion proposed by Pakdel-McKinley for onset of a purely-elastic instability

    Bi-Laplacian Growth Patterns in Disordered Media

    Full text link
    Experiments in quasi 2-dimensional geometry (Hele Shaw cells) in which a fluid is injected into a visco-elastic medium (foam, clay or associating-polymers) show patterns akin to fracture in brittle materials, very different from standard Laplacian growth patterns of viscous fingering. An analytic theory is lacking since a pre-requisite to describing the fracture of elastic material is the solution of the bi-Laplace rather than the Laplace equation. In this Letter we close this gap, offering a theory of bi-Laplacian growth patterns based on the method of iterated conformal maps.Comment: Submitted to PRL. For further information see http://www.weizmann.ac.il/chemphys/ander

    Autonomous stochastic resonance in fully frustrated Josephson-junction ladders

    Full text link
    We investigate autonomous stochastic resonance in fully frustrated Josephson-junction ladders, which are driven by uniform constant currents. At zero temperature large currents induce oscillations between the two ground states, while for small currents the lattice potential forces the system to remain in one of the two states. At finite temperatures, on the other hand, oscillations between the two states develop even below the critical current; the signal-to-noise ratio is found to display array-enhanced stochastic resonance. It is suggested that such behavior may be observed experimentally through the measurement of the staggered voltage.Comment: 6 pages, 11 figures, to be published in Phys. Rev.

    An Upper Bound on the Higgs Boson Mass from a Positivity Condition on the Mass Matrix

    Get PDF
    We impose the condition that the eigenvalues of the mass matrix in the shifted Lagrangian density be positive at \phi=\phi_{0}, the vacuum expectation value of the scalar field. Using the one-loop effective potential of the standard model, this condition leads to an upper bound on the Higgs boson mass m_{H}: m_{H}<230GeV, for a top quark mass of 175GeV.Comment: LaTex, 5 page

    Dynamical Gauge Symmetry Breaking in SU(3)L⊗U(1)XSU(3)_L\otimes U(1)_X Extension of the Standard Model

    Full text link
    We study the SU(3)L⊗U(1)XSU(3)_L\otimes U(1)_X extension of the Standard model with a strong U(1) coupling. We argue that current experiments limit this coupling to be relatively large. The model is dynamically broken to the Standard SU(2)L⊗U(1)SU(2)_L \otimes U(1) model at the scale of a few TeV with all the extra gauge bosons and the exotic quarks acquiring masses much larger than the scale of electroweak symmetry breaking. Furthermore we find that the model leads to large dynamical mass of the top quark and hence also breaks the electroweak gauge symmetry. It therefore leads to large dynamical effects within the Standard model and can partially replace the Higgs interactions.Comment: 4 pages, revtex, no figures; revised version predicting realistic mass spectru

    Drift and Diffusion in Periodically Driven Renewal Processes

    Full text link
    We consider the drift and diffusion properties of periodically driven renewal processes. These processes are defined by a periodically time dependent waiting time distribution, which governs the interval between subsequent events. We show that the growth of the cumulants of the number of events is asymptotically periodic and develop a theory which relates these periodic growth coefficients to the waiting time distribution defining the periodic renewal process. The first two coefficients, which are the mean frequency and effective diffusion coefficient of the number of events are considered in greater detail. They may be used to quantify stochastic synchronization.Comment: 29 pages, 6 figures, submitted to Journal of Statistical Physic
    • …
    corecore