869 research outputs found
Interferometric Evidence for Resolved Warm Dust in the DQ Tau System
We report on near-infrared (IR) interferometric observations of the
double-lined pre-main sequence (PMS) binary system DQ Tau. We model these data
with a visual orbit for DQ Tau supported by the spectroscopic orbit & analysis
of \citet{Mathieu1997}. Further, DQ Tau exhibits significant near-IR excess;
modeling our data requires inclusion of near-IR light from an 'excess' source.
Remarkably the excess source is resolved in our data, similar in scale to the
binary itself ( 0.2 AU at apastron), rather than the larger circumbinary
disk ( 0.4 AU radius). Our observations support the \citet{Mathieu1997}
and \citet{Carr2001} inference of significant warm material near the DQ Tau
binary.Comment: 14 pgs, 3 figures, ApJL in pres
The circumbinary disk of HD 98800B: Evidence for disk warping
The quadruple young stellar system HD 98800 consists of two spectroscopic binary pairs with a circumbinary disk around the B component. Recent work by Boden and collaborators using infrared interferometry and radial velocity data resulted in a determination of the physical orbit for HD 98800B. We use the resulting inclination of the binary and the measured extinction toward the B component stars to constrain the distribution of circumbinary material. Although a standard optically and geometrically thick disk model can reproduce the spectral energy distribution, it cannot account for the observed extinction if the binary and the disk are coplanar. We next constructed a dynamical model to investigate the influence of the A component, which is not in the BaâBb orbital plane, on the B disk. We find that these interactions have a substantial impact on the inclination of the B circumbinary disk with respect to the BaâBb orbital plane. The resulting warp would be sufficient to place material into the line of sight and the noncoplanar disk orientation may also cause the upper layers of the disk to intersect the line of sight if the disk is geometrically thick. These simulations also support that the dynamics of the BaâBb orbit clear the inner region to a radius of~3 AU. We then discuss whether the somewhat unusual properties of the HD 98800B disk are consistent with material remnant from the star formation process or with more recent creation by collisions from larger bodies
Noise driven translocation of short polymers in crowded solutions
In this work we study the noise induced effects on the dynamics of short
polymers crossing a potential barrier, in the presence of a metastable state.
An improved version of the Rouse model for a flexible polymer has been adopted
to mimic the molecular dynamics by taking into account both the interactions
between adjacent monomers and introducing a Lennard-Jones potential between all
beads. A bending recoil torque has also been included in our model. The polymer
dynamics is simulated in a two-dimensional domain by numerically solving the
Langevin equations of motion with a Gaussian uncorrelated noise. We find a
nonmonotonic behaviour of the mean first passage time and the most probable
translocation time, of the polymer centre of inertia, as a function of the
polymer length at low noise intensity. We show how thermal fluctuations
influence the motion of short polymers, by inducing two different regimes of
translocation in the molecule transport dynamics. In this context, the role
played by the length of the molecule in the translocation time is investigated.Comment: 11 pages, 3 figures, to appear in J. Stat. Mechanics: Theory and
Experiment, 200
Stellar and Molecular Radii of a Mira Star: First Observations with the Keck Interferometer Grism
Using a new grism at the Keck Interferometer, we obtained spectrally
dispersed (R ~ 230) interferometric measurements of the Mira star R Vir. These
data show that the measured radius of the emission varies substantially from
2.0-2.4 microns. Simple models can reproduce these wavelength-dependent
variations using extended molecular layers, which absorb stellar radiation and
re-emit it at longer wavelengths. Because we observe spectral regions with and
without substantial molecular opacity, we determine the stellar photospheric
radius, uncontaminated by molecular emission. We infer that most of the
molecular opacity arises at approximately twice the radius of the stellar
photosphere.Comment: 12 pages, including 3 figures. Accepted by ApJ
Spatially and Spectrally Resolved Hydrogen Gas within 0.1 AU of T Tauri and Herbig Ae/Be Stars
We present near-infrared observations of T Tauri and Herbig Ae/Be stars with
a spatial resolution of a few milli-arcseconds and a spectral resolution of
~2000. Our observations spatially resolve gas and dust in the inner regions of
protoplanetary disks, and spectrally resolve broad-linewidth emission from the
Brackett gamma transition of hydrogen gas. We use the technique of
spectro-astrometry to determine centroids of different velocity components of
this gaseous emission at a precision orders of magnitude better than the
angular resolution. In all sources, we find the gaseous emission to be more
compact than or distributed on similar spatial scales to the dust emission. We
attempt to fit the data with models including both dust and Brackett
gamma-emitting gas, and we consider both disk and infall/outflow morphologies
for the gaseous matter. In most cases where we can distinguish between these
two models, the data show a preference for infall/outflow models. In all cases,
our data appear consistent with the presence of some gas at stellocentric radii
of ~0.01 AU. Our findings support the hypothesis that Brackett gamma emission
generally traces magnetospherically driven accretion and/or outflows in young
star/disk systems.Comment: 48 pages, including 17 figures. Accepted for publication by Ap
Spatially Resolved Spectroscopy of Sub-AU-Sized Regions of T Tauri and Herbig Ae/Be Disks
We present spatially resolved near-IR spectroscopic observations of 15 young
stars. Using a grism spectrometer behind the Keck Interferometer, we obtained
an angular resolution of a few milli-arcseconds and a spectral resolution of
230, enabling probes of both gas and dust in the inner disks surrounding the
target stars. We find that the angular size of the near-IR emission typically
increases with wavelength, indicating hot, presumably gaseous material within
the dust sublimation radius. Our data also clearly indicate Brackett-gamma
emission arising from hot hydrogen gas, and suggest the presence of water vapor
and carbon monoxide gas in the inner disks of several objects. This gaseous
emission is more compact than the dust continuum emission in all cases. We
construct simple physical models of the inner disk and fit them to our data to
constrain the spatial distribution and temperature of dust and gas emission
components.Comment: 40 pages, 8 figures. Accepted for publication in Ap
DNA in nanopore-counterion condensation and coion depletion
Molecular dynamics simulations are used to study the equilibrium distribution
of monovalent ions in a nanopore connecting two water reservoirs separated by a
membrane, both for the empty pore and that with a single stranded DNA molecule
inside. In the presence of DNA, the counterions condense on the stretched
macromolecule effectively neutralizing it, and nearly complete depletion of
coions from the pore is observed. The implications of our results for
experiments on DNA translocation through alpha-hemolysin nanopores are
discussed.Comment: 8 pages, 2 figure
Science with the Keck Interferometer ASTRA Program
The ASTrometric and phase-Referenced Astronomy (ASTRA) project will provide
phase referencing and astrometric observations at the Keck Interferometer,
leading to enhanced sensitivity and the ability to monitor orbits at an
accuracy level of 30-100 microarcseconds. Here we discuss recent scientific
results from ASTRA, and describe new scientific programs that will begin in
2010-2011. We begin with results from the "self phase referencing" (SPR) mode
of ASTRA, which uses continuum light to correct atmospheric phase variations
and produce a phase-stabilized channel for spectroscopy. We have observed a
number of protoplanetary disks using SPR and a grism providing a spectral
dispersion of ~2000. In our data we spatially resolve emission from dust as
well as gas. Hydrogen line emission is spectrally resolved, allowing
differential phase measurements across the emission line that constrain the
relative centroids of different velocity components at the 10 microarcsecond
level. In the upcoming year, we will begin dual-field phase referencing (DFPR)
measurements of the Galactic Center and a number of exoplanet systems. These
observations will, in part, serve as precursors to astrometric monitoring of
stellar orbits in the Galactic Center and stellar wobbles of exoplanet host
stars. We describe the design of several scientific investigations capitalizing
on the upcoming phase-referencing and astrometric capabilities of ASTRA.Comment: Published in the proceedings of the SPIE 2010 conference on "Optical
and Infrared Interferometry II
First L-band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419
We present spatially-resolved K- and L-band spectra (at spectral resolution R
= 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were
obtained simultaneously with a new configuration of the 85-m baseline Keck
Interferometer. Our observations are sensitive to the radial distribution of
temperature in the inner region of the disk of MWC 419. We fit the visibility
data with both simple geometric and more physical disk models. The geometric
models (uniform disk and Gaussian) show that the apparent size increases
linearly with wavelength in the 2-4 microns wavelength region, suggesting that
the disk is extended with a temperature gradient. A model having a power-law
temperature gradient with radius simultaneously fits our interferometric
measurements and the spectral energy distribution data from the literature. The
slope of the power-law is close to that expected from an optically thick disk.
Our spectrally dispersed interferometric measurements include the Br gamma
emission line. The measured disk size at and around Br gamma suggests that
emitting hydrogen gas is located inside (or within the inner regions) of the
dust disk.Comment: Accepted for publication in Ap
- âŠ