11 research outputs found
New way to create high-speed LCDs based on the use of modified nanomaterials
Modified βdetonation nanodiamondβ (MDND), graphene oxide (MGO) and nanoclay (MNC) were doped to nematic (NLCs) and ferroelectric liquid crystals (FLCs). The effect of modified nanomaterials on the physical and electro-optical properties of liquid crystals was investigated
ΠΠΠ’ΠΠ§ΠΠ‘ΠΠΠ Π‘ΠΠΠΠ‘Π’ΠΠ ΠΠΠΠΠΠΠΠ‘ΠΠ Π£ΠΠ¬Π’Π ΠΠΠΠ‘ΠΠΠ Π‘ΠΠ«Π₯ ΠΠΠΠΠΠΠ ΠΠΠ’ΠΠΠΠ¦ΠΠΠΠΠΠΠ Π‘ΠΠΠ’ΠΠΠ Π‘ ΠΠΠΠΠ’Π ΠΠΠΠ ΠΠΠ¦ΠΠΠΠΠΠΠΠ«Π ΠΠ ΠΠ‘ΠΠ’ΠΠΠΠ
A method to create complexes of detonation nanodiamonds with molecules of an indotricarbocyanine dye was developed. The process of complex formation was shown to depend on the nanodiamond annealing conditions. Nanodiamonds that were vacuum annealed at 750oC display the most effective interaction with the dye molecules. Formation of the complexes was studied with the aid of optical spectroscopy in the visible and infrared regions.Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΡΠ»ΡΡΡΠ°Π΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ² Π΄Π΅ΡΠΎΠ½Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Π° Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π°ΠΌΠΈ ΠΈΠ½Π΄ΠΎΡΡΠΈΠΊΠ°ΡΠ±ΠΎΡΠΈΠ°Π½ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡΠ°ΡΠΈΡΠ΅Π»Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π½Π° ΠΏΡΠΎΡΠ΅ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π²Π»ΠΈΡΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π½Π°Π½ΠΎΠ°Π»ΠΌΠ°Π·ΠΎΠ². ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Ρ ΠΊΡΠ°ΡΠΈΡΠ΅Π»Π΅ΠΌ ΠΏΡΠΎΡΠ²Π»ΡΠ΅ΡΡΡ Π΄Π»Ρ ΡΠ»ΡΡΡΠ°Π΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ², ΠΎΡΠΎΠΆΠΆΠ΅Π½Π½ΡΡ
Π² Π²Π°ΠΊΡΡΠΌΠ΅ ΠΏΡΠΈ 750ΠΎΠ‘. ΠΡΠΎΡΠ΅ΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΠΈΠ·ΡΡΠ΅Π½ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ Π² Π²ΠΈΠ΄ΠΈΠΌΠΎΠΉ ΠΈ ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΡΡ
ΠΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ Π΄Π»Ρ ΡΠ΅Π°ΠΊΡΠΈΠΉ ΠΊΡΠΎΡΡ-ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠ»ΡΡΡΠ°Π΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ Π°Π»ΠΌΠ°Π·ΠΎΠ²
Methods for preparation of nanocomposites of modified detonation nanodiamonds (DND) with metallic palladium have been developed and their catalytic activity in the Suzuki-Miyaura cross-coupling reaction in various reaction media has been studied. Methods for the regeneration of palladium-containing nanocomposites from the reaction mixture have been developed. The high catalytic activity of nanocomposites is confirmed by kinetic analysis based on the results of chromatographic analysis of the reaction mixture and is comparable to the literature data about similar catalytic systems. Regenerated nanocomposites showed the retention of catalytic activity for 3 consecutive cross-coupling cycles on model systems.Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ² ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ»ΡΡΡΠ°Π΄ΠΈΡΠΏΠ΅ΡΡΠ½ΠΎΠ³ΠΎ Π°Π»ΠΌΠ°Π·Π° Π΄Π΅ΡΠΎΠ½Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Π° Ρ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΠ°Π»Π»Π°Π΄ΠΈΠ΅ΠΌ ΠΈ ΠΈΠ·ΡΡΠ΅Π½Π° ΠΈΡ
ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΊΡΠΎΡΡ-ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΡ Π‘ΡΠ·ΡΠΊΠΈ-ΠΠΈΡΡΡΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΡΡ
ΡΡΠ΅Π΄Π°Ρ
. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΠΏΠ°Π»Π»Π°Π΄ΠΈΠΉΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ² ΠΈΠ· ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ. ΠΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ² ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΊΡΠΎΡΡ-ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΡ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ ΠΈ ΡΠΎΠΏΠΎΡΡΠ°Π²ΠΈΠΌΠ° Ρ ΡΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠΌΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠΌΠΈ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠ°ΠΌΠΈ. Π Π΅Π³Π΅Π½Π΅ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π΄Π»Ρ 3 ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΠΈΠΊΠ»ΠΎΠ² ΠΊΡΠΎΡΡ-ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΡ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌΠ°Ρ
Π‘ΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈΠ½Π΄ΠΎΡΡΠΈΠΊΠ°ΡΠ±ΠΎΡΠΈΠ°Π½ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡΠ°ΡΠΈΡΠ΅Π»Ρ Π² ΡΠΊΠ°Π½ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
The paper presents the results of studies of the spectral properties of a photosensitizer based on indotricarbocyanine dye when accumulating in tissues of experimental animals. Using laser fluorescence spectroscopy, the in vivo and ex vivo fluorescence spectra of tissue-localized indotricarbocyanine dye were obtained for different time counts after intravenous administration. The profile of the pharmacokinetics of its accumulation and withdrawal was determined from the change in the intensity of fluorescence in the tumor and healthy muscle tissues of the photosensitizer. A monotonic deformation of its fluorescence spectrum was revealed in the tissues of tumor nodes and muscles of the thigh when registered through the skin over time after intravenous administration. The achievement of the maximum accumulation of the photosensitizer in the tumor correlates with the stabilization of the shape of its in vivo fluorescence spectrum. Thus, the maximum shift can be used as a diagnostic indicator of the maximum accumulation of indotricarbocyanine photosensitizer in the tumor tissues. The results were confirmed for two groups of animals: the first one β black mice of the C57Bl/6 line with an inoculated tumor of Clone M3 melanoma, the second β white mice of the ICR line with an inoculated tumor of Ehrlich ascites carcinoma. The analysis of the shape of the fluorescence spectrum of the photosensitizer during registration through the skin for animals with different colors has been carried out.Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΠΎΡΠΎΡΠ΅Π½ΡΠΈΠ±ΠΈΠ»ΠΈΠ·Π°ΡΠΎΡΠ° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΈΠ½Π΄ΠΎΡΡΠΈΠΊΠ°ΡΠ±ΠΎΡΠΈΠ°Π½ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡΠ°ΡΠΈΡΠ΅Π»Ρ ΠΏΡΠΈ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠΈ Π² ΡΠΊΠ°Π½ΡΡ
ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π»Π°Π·Π΅ΡΠ½ΠΎΠΉ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΡΠΏΠ΅ΠΊΡΡΡ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ in vivo ΠΈ ex vivo Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π² ΡΠΊΠ°Π½ΡΡ
ΠΈΠ½Π΄ΠΎΡΡΠΈΠΊΠ°ΡΠ±ΠΎΡΠΈΠ°Π½ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡΠ°ΡΠΈΡΠ΅Π»Ρ Π΄Π»Ρ ΡΠ°Π·Π½ΡΡ
Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΠΎΡΡΡΠ΅ΡΠΎΠ² ΠΏΠΎΡΠ»Π΅ Π²Π½ΡΡΡΠΈΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ. ΠΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ Π² ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΠΎΠΉ ΠΈ Π·Π΄ΠΎΡΠΎΠ²ΠΎΠΉ ΠΌΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΡΡ
ΡΠΎΡΠΎΡΠ΅Π½ΡΠΈΠ±ΠΈΠ»ΠΈΠ·Π°ΡΠΎΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ ΠΏΡΠΎΡΠΈΠ»Ρ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ Π΅Π³ΠΎ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ ΠΈ Π²ΡΠ²ΠΎΠ΄Π°. ΠΡΡΠ²Π»Π΅Π½Π° ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½Π°Ρ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΡ Π΅Π³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ Π² ΡΠΊΠ°Π½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΡ
ΡΠ·Π»ΠΎΠ² ΠΈ ΠΌΡΡΡ Π±Π΅Π΄ΡΠ° ΠΏΡΠΈ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠΆΡ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΡΠ»Π΅ Π²Π½ΡΡΡΠΈΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ. ΠΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ ΡΠΎΡΠΎΡΠ΅Π½ΡΠΈΠ±ΠΈΠ»ΠΈΠ·Π°ΡΠΎΡΠ° Π² ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΠΎΠΌ ΡΠ·Π»Π΅ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΡΠ΅Ρ ΡΠΎ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ ΡΠΎΡΠΌΡ Π΅Π³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ in vivo. ΠΡΠΈ ΡΡΠΎΠΌ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½Π΄ΠΈΠΊΠ°ΡΠΎΡΠ° ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ ΠΈΠ½Π΄ΠΎΡΡΠΈΠΊΠ°ΡΠ±ΠΎΡΠΈΠ°Π½ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΎΡΠΎΡΠ΅Π½ΡΠΈΠ±ΠΈΠ»ΠΈΠ·Π°ΡΠΎΡΠ° Π² ΡΠΊΠ°Π½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΡ
ΡΠ·Π»ΠΎΠ². Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Ρ Π΄Π»Ρ Π΄Π²ΡΡ
Π³ΡΡΠΏΠΏ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
: ΠΏΠ΅ΡΠ²Π°Ρ β ΡΠ΅ΡΠ½ΡΠ΅ ΠΌΡΡΠΈ Π»ΠΈΠ½ΠΈΠΈ C57Bl/6 Ρ ΠΏΠ΅ΡΠ΅Π²ΠΈΡΠΎΠΉ ΠΎΠΏΡΡ
ΠΎΠ»ΡΡ ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ Clone M3, Π²ΡΠΎΡΠ°Ρ β Π±Π΅Π»ΡΠ΅ ΠΌΡΡΠΈ Π»ΠΈΠ½ΠΈΠΈ ICR Ρ ΠΏΠ΅ΡΠ΅Π²ΠΈΡΠΎΠΉ ΠΎΠΏΡΡ
ΠΎΠ»ΡΡ Π°ΡΡΠΈΡΠ½ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½ΠΎΠΌΡ ΠΡΠ»ΠΈΡ
Π°. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΡΠΎΡΠΌΡ ΡΠΏΠ΅ΠΊΡΡΠ° ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ ΡΠΎΡΠΎΡΠ΅Π½ΡΠΈΠ±ΠΈΠ»ΠΈΠ·Π°ΡΠΎΡΠ° ΠΏΡΠΈ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠΆΡ Π΄Π»Ρ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
Ρ ΡΠ°Π·Π½ΠΎΠΉ ΠΎΠΊΡΠ°ΡΠΊΠΎΠΉ
Optical properties of the complexes of detonation nanodiamonds with an indotricarbocyanine dye
A method to create complexes of detonation nanodiamonds with molecules of an indotricarbocyanine dye was developed. The process of complex formation was shown to depend on the nanodiamond annealing conditions. Nanodiamonds that were vacuum annealed at 750oC display the most effective interaction with the dye molecules. Formation of the complexes was studied with the aid of optical spectroscopy in the visible and infrared regions
Optical properties of the complexes of detonation nanodiamonds with an indotricarbocyanine dye
Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΡΠ»ΡΡΡΠ°Π΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ² Π΄Π΅ΡΠΎΠ½Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ
ΡΠΈΠ½ΡΠ΅Π·Π° Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π°ΠΌΠΈ ΠΈΠ½Π΄ΠΎΡΡΠΈΠΊΠ°ΡΠ±ΠΎΡΠΈΠ°Π½ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡΠ°ΡΠΈΡΠ΅Π»Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π½Π° ΠΏΡΠΎΡΠ΅ΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π²Π»ΠΈΡΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π½Π°Π½ΠΎΠ°Π»ΠΌΠ°Π·ΠΎΠ². ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅
Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Ρ ΠΊΡΠ°ΡΠΈΡΠ΅Π»Π΅ΠΌ ΠΏΡΠΎΡΠ²Π»ΡΠ΅ΡΡΡ Π΄Π»Ρ ΡΠ»ΡΡΡΠ°Π΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ
Π°Π»ΠΌΠ°Π·ΠΎΠ², ΠΎΡΠΎΠΆΠΆΠ΅Π½Π½ΡΡ
Π² Π²Π°ΠΊΡΡΠΌΠ΅
ΠΏΡΠΈ 750 ΠΎΠ‘. ΠΡΠΎΡΠ΅ΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΠΈΠ·ΡΡΠ΅Π½ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ Π² Π²ΠΈΠ΄ΠΈΠΌΠΎΠΉ
ΠΈ ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΡΡ
. A method to create complexes of detonation nanodiamonds with molecules of an indotricarbocyanine
dye was developed. The process of complex formation was shown to depend on the nanodiamond annealing
conditions. Nanodiamonds that were vacuum annealed at 750 oC display the most effective interaction with
the dye molecules. Formation of the complexes was studied with the aid of optical spectroscopy in the visible
and infrared regions
Spectral and luminescent properties and morphology of self-assembled nanostructures of an indotricarbocyanine dye
Spectral and luminescent properties of an indotricarbocyanine dye are studied in solutions and after deposition on quartz or silicon substrates. It is found that the dye molecules self-assemble in aqueous EtOH solutions to form H*-aggregates. The absorption band of the H*-aggregates shows a hypsochromic shift of 192 nm (5291 cmβ1) relative to the absorption maximum of dye monomers (706 nm) and has a full width at half maximum of 21 nm (797 cmβ1). The morphology of the H*-aggregates of the indotricarbocyanine dye is studied for the ο¬ rst time. It is found that the aggregates are rod-like species ~10 nm high, 100 nm wide, and several micrometers long. H-aggregates with a ο¬ uorescence maximum at 560 nm and Stokes shift of 325 cmβ1 in addition to non-ο¬ uorescent H*-aggregates form in aqueous EtOH solutions and are nanoparticles with a height of 1β3 nm and lateral dimensions of ~100 nm
Indotricarbocyanine dyes relevant for photodynamic therapy and their radicals: Substituent effects studied by optical and electrochemical methods
Photodynamic therapy is an effective and minimally invasive treatment method for cancer. A deeper under-
standing of the photocytotoxicity mechanism of cyanine dyes is necessary for the development of more efficient
photosensitizers. We combine electrochemistry, optical and ESR spectroscopy, and quantum chemical calcula-
tions to study indotricarbocyanine dyes relevant for photodynamic therapy. The incorporation of 4-meso-chloride
and a 3,5-o-phenylene bridge into the polymethine chain results in a hypsochromic shift of the absorption
spectrum by ca. 30 nm and in a downward shift of the frontier orbitals energy levels by 0.1β0.3 eV. In addition,
such substitution imparts stability to the electrogenerated radical dications of the dyes. The presence of 4-meso-
chloride and a 3,5-trimethylene bridge in the polymethine chain causes the absorption spectrum to shift bath-
ochromically by almost 40 nm and the HOMOβLUMO energy gap to decrease by ca. 0.1 eV. The radical dication
of the dye with such substitution is particularly stable and exhibits improved electron delocalization. The radical
dication of the dye with an unsubstituted polymethine chain is unstable due to its propensity to form dimers. The
substituents at the nitrogen atoms are shown to have almost no influence on the optical and electrochemical
properties of the indotricarbocyanine dyes. The radical dications of the dyes with an o-phenylene bridge can
oxidize bromide ions, unlike the radical dications of the dyes with an unsubstituted polymethine chain or with a
trimethylene bridge. The reported data can be used to develop new indotricarbocyanine dyes with desired
characteristics
Novel indotricarbocyanine dyes covalently bonded to polyethylene glycol for theranostics
The synthesis methods for the indotricarbocyanine dyes covalently bonded to polyethylene glycols with
varying degrees of polymerization have been developed. New indotricarbocyanine was synthesized in one step using the Mukayama reagent in polyethylene glycol with cesium fluoride as a basic catalyst. In vivo investigation of the phototherapeutic dye activity has shown selective recognition of malignant tissues, where accumulation of the dye was 4β5 times higher than in normal tissues. The necrotic area after local photoirradiation at the effective energy fluence 180 J/cm2, l = 780 nm was observed to a depth of 2.5 cm making the synthesized dyes very promising for further pharmaceutic researc
Novel indotricarbocyanine dyes covalently bonded to polyethylene glycol for theranostics
The synthesis methods for the indotricarbocyanine dyes covalently bonded to polyethylene glycols with
varying degrees of polymerization have been developed. New indotricarbocyanine was synthesized in one step using the Mukayama reagent in polyethylene glycol with cesium fluoride as a basic catalyst. In vivo investigation of the phototherapeutic dye activity has shown selective recognition of malignant tissues, where accumulation of the dye was 4β5 times higher than in normal tissues. The necrotic area after local photoirradiation at the effective energy fluence 180 J/cm2, l = 780 nm was observed to a depth of 2.5 cm making the synthesized dyes very promising for further pharmaceutic researc