10 research outputs found
Модель биомедицинского клеточного продукта для доклинических исследований на крупном лабораторном животном
Objective: to develop a model of a biomedical cell product that is consistent with the «homologous drug» strategy based on protocols for preparing the cell component and scaffold carrier for preclinical studies on a large laboratory animal (pig). Materials and methods. Biomedical cell products and skin equivalents (SE), were formed using plasma cryoprecipitate prepared from blood plasma of healthy donors and mesenchymal stem cells (MSCs) of human adipose tissue. Cryoprecipitate from pig blood plasma and human adipose tissue-derived MSCs were used to form model skin equivalents (mSE). Bright-field microscopy, phase-contrast microscopy (Leica DMI 3000B) and fluorescence microscopy (Cytation 5 imager; BioTek, USA) were used to monitor the state of cells in the culture and in the composition of the equivalents. Scaffolds for equivalents were tested for cytotoxicity (MTT test, direct contact method). The cell distribution density was characterized by author’s method (Patent No. 2675376 of the Russian Federation). Results. An mSE was developed for preclinical studies on a large laboratory animal (pig). In the mSE, components that change from halogen to xenogenic conditions during transplantation to the animal were replaced. A comprehensive approach to preparing mSE was presented. It includes sampling of primary pig biomaterial, extraction and characterization of adipose tissue-derived MSCs, preparation of a scaffold carrier for the corresponding «homologous drug» strategy. Cytotoxicity of the mSE scaffold was evaluated. It was shown that mSE provides mechanical support (similar to SE) to cells, as well as comparable development of cellular events during cultivation. Conclusion. A model of a biomedical cell product was developed. This model is consistent with the «homologous drug» strategy for preclinical studies on a large laboratory animal (pig). The paper presented a comprehensive approach to developing a model equivalent based on protocols for preparation and testing of the cellular component, the scaffold carrier and the ready-to-use model equivalent.Цель: разработать модель биомедицинского клеточного продукта, согласующуюся со стратегией «гомологичный препарат» на основе протоколов подготовки клеточной составляющей и скаффолда-носителя для доклинических исследований на крупном лабораторном животном (свинье). Материалы и методы. Биомедицинские клеточные продукты – эквиваленты кожи (ЭК) формировали с использованием криопреципитата плазмы крови здоровых доноров и мезенхимальных стволовых клеток (MSCs) жировой ткани человека. Для формирования модельных эквивалентов кожи (мЭК) использовали криопреципитат плазмы крови свиней и MSCs жировой ткани свиней. Наблюдение за состоянием клеток в культуре и в составе эквивалентов проводили с использованием методов светлого поля, фазового контраста (Leica DMI 3000B) и флуоресцентной микроскопии (имиджер Cytation 5; BioTek, USA). Скаффолды эквивалентов тестировали на цитотоксичность (МТТ-тест, метод прямого контакта). Характеристику плотности распределения клеток проводили авторским способом (Пат. № 2675376 РФ). Результаты. Разработан модельный эквивалент кожи (мЭК) для проведения доклинических исследований на крупном лабораторном животном (свинье). В мЭК замещены компоненты, переходящие из алогенных условий в ксеногенные при трансплантации животному. Представлен комплексный подход для подготовки мЭК, включающий забор первичного биоматериала свиньи, выделение и характеристику MSCs жировой ткани, подготовку скаффолда-носителя, соответствующего стратегии «гомологичный препарат». Проведена оценка цитотоксичности скаффолда мЭК. Показано, что мЭК обеспечивает аналогичную эквиваленту кожи (ЭК) механическую поддержку клеток и сопоставимое развитие клеточных событий при культивировании. Вывод. Разработана модель биомедицинского клеточного продукта, согласующаяся со стратегией «гомологичный препарат» для доклинических исследований на крупном лабораторном животном (свинье). Представлен комплексный подход, для разработки модельного эквивалента основанный на протоколах подготовки и тестирования клеточной составляющей, скаффолда-носителя и готового модельного эквивалента
Biomedical cell product model for preclinical studies carried out on a large laboratory animal
Objective: to develop a model of a biomedical cell product that is consistent with the «homologous drug» strategy based on protocols for preparing the cell component and scaffold carrier for preclinical studies on a large laboratory animal (pig). Materials and methods. Biomedical cell products and skin equivalents (SE), were formed using plasma cryoprecipitate prepared from blood plasma of healthy donors and mesenchymal stem cells (MSCs) of human adipose tissue. Cryoprecipitate from pig blood plasma and human adipose tissue-derived MSCs were used to form model skin equivalents (mSE). Bright-field microscopy, phase-contrast microscopy (Leica DMI 3000B) and fluorescence microscopy (Cytation 5 imager; BioTek, USA) were used to monitor the state of cells in the culture and in the composition of the equivalents. Scaffolds for equivalents were tested for cytotoxicity (MTT test, direct contact method). The cell distribution density was characterized by author’s method (Patent No. 2675376 of the Russian Federation). Results. An mSE was developed for preclinical studies on a large laboratory animal (pig). In the mSE, components that change from halogen to xenogenic conditions during transplantation to the animal were replaced. A comprehensive approach to preparing mSE was presented. It includes sampling of primary pig biomaterial, extraction and characterization of adipose tissue-derived MSCs, preparation of a scaffold carrier for the corresponding «homologous drug» strategy. Cytotoxicity of the mSE scaffold was evaluated. It was shown that mSE provides mechanical support (similar to SE) to cells, as well as comparable development of cellular events during cultivation. Conclusion. A model of a biomedical cell product was developed. This model is consistent with the «homologous drug» strategy for preclinical studies on a large laboratory animal (pig). The paper presented a comprehensive approach to developing a model equivalent based on protocols for preparation and testing of the cellular component, the scaffold carrier and the ready-to-use model equivalent