1,848 research outputs found

    Eucalcemic Parathyroid Hormone Elevation After Parathyroidectomy for Primary Sporadic Hyperparathyroidism: Risk Factors, Trend, and Outcome

    Get PDF
    BACKGROUND: Patients with eucalcemic parathyroid hormone elevation (ePTH) after parathyroidectomy for primary hyperparathyroidism (HPT) may be at risk of recurrence. We aimed to examine risk factors, trend of PTH level, and outcome of patients with ePTH 6 months after parathyroidectomy. METHODS: A total of 161 primary HPT were analyzed. The 6-month postoperative calcium and PTH levels were obtained. ePTH was defined as an elevated PTH level in the presence of normocalcemia. At 6 months, 98 had eucalcemic normal PTH and 63 (39.1%) had ePTH. Perioperative variables, PTH trend, and outcome were compared between 2 groups. Multivariable analyses were performed to identify independent preoperative and operative/postoperative risk factors for ePTH. RESULTS: Among preoperative factors, advanced age (odds ratio [OR] = 1.042, P = .027) and low 25-hydroxyvitamin D(3) (25OHD(3)) (OR = 1.043, P = .009) were independently associated with ePTH, whereas among operative/postoperative factors, high 10-min intraoperative PTH level (OR = 1.015, P = .040) and high postoperative 3-month PTH (OR = 1.048, P < .001) were independently associated with ePTH. After a mean follow-up of 38.7 months, recurrence rate was similar between the 2 groups (P = 1.00). In the first 2 postoperative years, 75 (46.6%) had ePTH on at least 1 occasion and 8 (5.0%) had persistently ePTH on every occasion. CONCLUSIONS: Advanced age, low 25OHD(3), high 10-min intraoperative PTH, and high postoperative 3-month PTH were independently associated with ePTH at 6-month. Although 39.1% of patients had ePTH at 6 months, more than 50% had at least 1 ePTH within the first 2 years of follow-up. Recurrence appeared similar between those with or without ePTH at 6 months.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Computers from plants we never made. Speculations

    Full text link
    We discuss possible designs and prototypes of computing systems that could be based on morphological development of roots, interaction of roots, and analog electrical computation with plants, and plant-derived electronic components. In morphological plant processors data are represented by initial configuration of roots and configurations of sources of attractants and repellents; results of computation are represented by topology of the roots' network. Computation is implemented by the roots following gradients of attractants and repellents, as well as interacting with each other. Problems solvable by plant roots, in principle, include shortest-path, minimum spanning tree, Voronoi diagram, α\alpha-shapes, convex subdivision of concave polygons. Electrical properties of plants can be modified by loading the plants with functional nanoparticles or coating parts of plants of conductive polymers. Thus, we are in position to make living variable resistors, capacitors, operational amplifiers, multipliers, potentiometers and fixed-function generators. The electrically modified plants can implement summation, integration with respect to time, inversion, multiplication, exponentiation, logarithm, division. Mathematical and engineering problems to be solved can be represented in plant root networks of resistive or reaction elements. Developments in plant-based computing architectures will trigger emergence of a unique community of biologists, electronic engineering and computer scientists working together to produce living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing inspired by physics, chemistry and biology. Essays presented to Julian Miller on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew Adamatzky (Springer, 2017

    Implementation of nutritional guidelines in a university hospital monitored by repeated point prevalence surveys

    Get PDF
    Background/Objectives: Malnutrition is present in 20–50% of hospitalized patients, and nutritional care is a challenge. The aim was to evaluate whether the implementation of a nutritional strategy would influence nutritional care performance in a university hospital. Subjects/Methods: This was a prospective quality improvement program implementing guidelines for nutritional care, with the aim of improving nutritional practice. The Nutrition Risk Screening (NRS) 2002 was used. Point prevalence surveys over 2 years to determine whether nutritional practice had improved. Results: In total, 3604 (70%) of 5183 eligible patients were screened and 1230 (34%) were at nutritional risk. Only 53% of the at-risk patients got nutritional treatment and 5% were seen by a dietician. The proportion of patients screened increased from the first to the eighth point prevalence survey (P=0.012), but not the proportion of patients treated (P=0.66). The four initial screening questions in NRS 2002 identified 92% of the patients not at nutritional risk. Conclusions: Implementation of nutritional guidelines improved the screening performance, but did not increase the proportion of patients who received nutritional treatment. Point prevalence surveys were useful to evaluate nutritional practice in this university hospital. In order to improve practice, we suggest using only the four initial screening questions in NRS 2002 to identify patients not at risk, better education in nutritional care for physicians and nurses, and more dieticians employed. Audit of implementation of guidelines, performed by health authorities, and specific reimbursement for managing nutrition may also improve practice.publishedVersio

    How to look next? A data-driven approach for scanpath prediction

    Get PDF
    By and large, current visual attention models mostly rely, when considering static stimuli, on the following procedure. Given an image, a saliency map is computed, which, in turn, might serve the purpose of predicting a sequence of gaze shifts, namely a scanpath instantiating the dynamics of visual attention deployment. The temporal pattern of attention unfolding is thus confined to the scanpath generation stage, whilst salience is conceived as a static map, at best conflating a number of factors (bottom-up information, top-down, spatial biases, etc.). In this note we propose a novel sequential scheme that consists of a three-stage processing relying on a center-bias model, a context/layout model, and an object-based model, respectively. Each stage contributes, at different times, to the sequential sampling of the final scanpath. We compare the method against classic scanpath generation that exploits state-of-the-art static saliency model. Results show that accounting for the structure of the temporal unfolding leads to gaze dynamics close to human gaze behaviour

    Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm

    Full text link
    Over the past five decades, k-means has become the clustering algorithm of choice in many application domains primarily due to its simplicity, time/space efficiency, and invariance to the ordering of the data points. Unfortunately, the algorithm's sensitivity to the initial selection of the cluster centers remains to be its most serious drawback. Numerous initialization methods have been proposed to address this drawback. Many of these methods, however, have time complexity superlinear in the number of data points, which makes them impractical for large data sets. On the other hand, linear methods are often random and/or sensitive to the ordering of the data points. These methods are generally unreliable in that the quality of their results is unpredictable. Therefore, it is common practice to perform multiple runs of such methods and take the output of the run that produces the best results. Such a practice, however, greatly increases the computational requirements of the otherwise highly efficient k-means algorithm. In this chapter, we investigate the empirical performance of six linear, deterministic (non-random), and order-invariant k-means initialization methods on a large and diverse collection of data sets from the UCI Machine Learning Repository. The results demonstrate that two relatively unknown hierarchical initialization methods due to Su and Dy outperform the remaining four methods with respect to two objective effectiveness criteria. In addition, a recent method due to Erisoglu et al. performs surprisingly poorly.Comment: 21 pages, 2 figures, 5 tables, Partitional Clustering Algorithms (Springer, 2014). arXiv admin note: substantial text overlap with arXiv:1304.7465, arXiv:1209.196

    Mathematical Analysis of Copy Number Variation in a DNA Sample Using Digital PCR on a Nanofluidic Device

    Get PDF
    Copy Number Variations (CNVs) of regions of the human genome have been associated with multiple diseases. We present an algorithm which is mathematically sound and computationally efficient to accurately analyze CNV in a DNA sample utilizing a nanofluidic device, known as the digital array. This numerical algorithm is utilized to compute copy number variation and the associated statistical confidence interval and is based on results from probability theory and statistics. We also provide formulas which can be used as close approximations

    Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand.

    Get PDF
    OBJECTIVE: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. DESIGN: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. METHODS: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. RESULTS: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. CONCLUSION: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age

    Study of CP violation in Dalitz-plot analyses of B0 --> K+K-KS, B+ --> K+K-K+, and B+ --> KSKSK+

    Get PDF
    We perform amplitude analyses of the decays B0K+KKS0B^0 \to K^+K^-K^0_S, B+K+KK+B^+ \rightarrow K^+K^-K^+, and B+KS0KS0K+B^+ \to K^0_S K^0_S K^+, and measure CP-violating parameters and partial branching fractions. The results are based on a data sample of approximately 470×106470\times 10^6 BBˉB\bar{B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy BB factory at the SLAC National Accelerator Laboratory. For B+K+KK+B^+ \to K^+K^-K^+, we find a direct CP asymmetry in B+ϕ(1020)K+B^+ \to \phi(1020)K^+ of ACP=(12.8±4.4±1.3)A_{CP}= (12.8\pm 4.4 \pm 1.3)%, which differs from zero by 2.8σ2.8 \sigma. For B0K+KKS0B^0 \to K^+K^-K^0_S, we measure the CP-violating phase βeff(ϕ(1020)KS0)=(21±6±2)\beta_{\rm eff} (\phi(1020)K^0_S) = (21\pm 6 \pm 2)^\circ. For B+KS0KS0K+B^+ \to K^0_S K^0_S K^+, we measure an overall direct CP asymmetry of ACP=(45+4±2)A_{CP} = (4 ^{+4}_{-5} \pm 2)%. We also perform an angular-moment analysis of the three channels, and determine that the fX(1500)f_X(1500) state can be described well by the sum of the resonances f0(1500)f_0(1500), f2(1525)f_2^{\prime}(1525), and f0(1710)f_0(1710).Comment: 35 pages, 68 postscript figures. v3 - minor modifications to agree with published versio

    Probability landscapes for integrative genomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The comprehension of the gene regulatory code in eukaryotes is one of the major challenges of systems biology, and is a requirement for the development of novel therapeutic strategies for multifactorial diseases. Its bi-fold degeneration precludes brute force and statistical approaches based on the genomic sequence alone. Rather, recursive integration of systematic, whole-genome experimental data with advanced statistical regulatory sequence predictions needs to be developed. Such experimental approaches as well as the prediction tools are only starting to become available and increasing numbers of genome sequences and empirical sequence annotations are under continual discovery-driven change. Furthermore, given the complexity of the question, a decade(s) long multi-laboratory effort needs to be envisioned. These constraints need to be considered in the creation of a framework that can pave a road to successful comprehension of the gene regulatory code.</p> <p>Results</p> <p>We introduce here a concept for such a framework, based entirely on systematic annotation in terms of probability profiles of genomic sequence using any type of relevant experimental and theoretical information and subsequent cross-correlation analysis in hypothesis-driven model building and testing.</p> <p>Conclusion</p> <p>Probability landscapes, which include as reference set the probabilistic representation of the genomic sequence, can be used efficiently to discover and analyze correlations amongst initially heterogeneous and un-relatable descriptions and genome-wide measurements. Furthermore, this structure is usable as a support for automatically generating and testing hypotheses for alternative gene regulatory grammars and the evaluation of those through statistical analysis of the high-dimensional correlations between genomic sequence, sequence annotations, and experimental data. Finally, this structure provides a concrete and tangible basis for attempting to formulate a mathematical description of gene regulation in eukaryotes on a genome-wide scale.</p

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389
    corecore