741 research outputs found

    Ethics In The Accounting Curriculum: What Is Really Being Covered?

    Get PDF
    This paper examines the current level of ethics integration across the accounting curriculum, analyzing the quantity, methods and topics included in coverage. Results of a survey of U.S. accounting faculty from 44 states and 97 different institutions on these issues are presented. The study is broken into two sections: the actual level of ethics integration and what is actually being taught. Prior research in the field has been limited to the extent to which ethics is covered in the classroom and avoided looking at what specifically is being done. This study extends this research by providing an update on the level of coverage as it exists today in the U.S., and by identifying the specific ethics topics being covered. Overall, we find that ethics integration efforts on a per-course basis are modest, and may be inadequate. We suggest that accounting programs that integrate ethics develop a formal ethics integration plan to ensure essential topics are covered, and to maximize the impact on students ethics

    Experimental observation of high-order quantum accelerator modes.

    Get PDF
    Using a freely falling cloud of cold cesium atoms periodically kicked by pulses from a vertical standing wave of laser light, we present the first experimental observation of high-order quantum accelerator modes. This confirms the recent prediction by Fishman, Guarneri, and Rebuzzini [Phys. Rev. Lett.10.1103/PhysRevLett.89.084101 89, 084101 (2002)]. We also show how these accelerator modes can be identified with the stable regions of phase space in a classical-like chaotic system, despite their intrinsically quantum origin

    Bi-modal stimulation in the treatment of tinnitus: a study protocol for an exploratory trial to optimise stimulation parameters and patient subtyping

    Get PDF
    Introduction: Tinnitus is the perception of sound in the absence of a corresponding external acoustic stimulus. Bi-modal neuromodulation is emerging as a promising treatment for this condition. The main objectives of this study are to investigate the relevance of inter-stimuli timing and the choice of auditory stimuli for a proprietary bi-modal (auditory and somatosensory) neuromodulation device and to explore whether specific subtypes of patients are differentially responsive to this novel intervention for reducing the symptoms of chronic tinnitus. Methods and analysis: This is a two-site, randomised, triple-blind, exploratory study of a proprietary neuromodulation device with a pre-post and 12-month follow-up design. Three different bi-modal stimulation parameter sets will be examined. The study will enrol 342 patients, split 80:20 between two sites (Dublin, Ireland and Regensburg, Germany), to complete 12 weeks of treatment with the device. Patients will be allocated to one of three arms using a step-wise stratification according to four binary categories: tinnitus tonality, sound level tolerance (using Loudness Discomfort Level of <60 dB SL as an indicator for hyperacusis), hearing thresholds, and presence of a noise-induced audiometric profile. The main indicators of relative clinical efficacy for the three different parameter sets are two patient-reported outcomes measures, the Tinnitus Handicap Inventory and the Tinnitus Functional Index, after 12 weeks of intervention. Clinical efficacy will be further explored in a series of patient subtypes, split by the stratification variables and by presence of a somatic tinnitus. Evidence for sustained effects on the psychological and functional impact of tinnitus will be followed up for 12 months. Safety data will be collected and reported. A number of feasibility measures to inform future trial design include: reasons for exclusion, completeness of data collection, attrition rates, patient’s adherence to the device usage as per manufacturer’s instructions and evaluation of alternative methods for estimating tinnitus impact and tinnitus loudness. Ethics and dissemination: This study protocol is approved by the Tallaght Hospital / St. James’s Hospital Joint Research Ethics Committee in Dublin, Republic of Ireland, and by the Ethics Committee of the University Clinic Regensburg, Germany. Findings will be disseminated to relevant research, clinical, health service and patient communities through publications in peer-reviewed and popular science journals and presentations at scientific and clinical conferences. Trial registration number; the trial is registered on ClinicalTrials.gov (NCT02669069). The sponsor is Neuromod Devices, Dublin, Republic of Ireland. STRENGTHS AND LIMITATIONS OF THIS STUDY • The main strength of this study is that it is a large two-site, triple-blinded, randomised trial that will provide exploratory evidence of the relevance of stimulation parameters on the clinical efficacy of different bi-modal stimulation parameters and will inform future trial design. • The study comprehensively characterises patients for subtyping and this will refine candidature for the intervention. • Among the limitations of this study are the variability in duration between screening and enrolment and the selection of the investigated stimulation parameters. • The online recruitment process may inadvertently introduce participant selection bias

    The histone chaperones Vps75 and Nap1 form ring-like, tetrameric structures in solution

    Get PDF
    NAP-1 fold histone chaperones play an important role in escorting histones to and from sites of nucleosome assembly and disassembly. The two NAP-1 fold histone chaperones in budding yeast, Vps75 and Nap1, have previously been crystalized in a characteristic homodimeric conformation. In this study, a combination of small angle X-ray scattering, multi angle light scattering and pulsed electron–electron double resonance approaches were used to show that both Vps75 and Nap1 adopt ring-shaped tetrameric conformations in solution. This suggests that the formation of homotetramers is a common feature of NAP-1 fold histone chaperones. The tetramerisation of NAP-1 fold histone chaperones may act to shield acidic surfaces in the absence of histone cargo thus providing a ‘self-chaperoning’ type mechanism

    Accounting for seasonality in extreme sea-level estimation

    Get PDF
    Reliable estimates of sea-level return-levels are crucial for coastal flooding risk assessments and for coastal flood defence design. We describe a novel method for estimating extreme sea-levels that is the first to capture seasonality, interannual variations and longer term changes. We use a joint probabilities method, with skew-surge and peak-tide as two sea-level components. The tidal regime is predictable, but skew-surges are stochastic. We present a statistical model for skew-surges, where the main body of the distribution is modelled empirically while a nonstationary generalised Pareto distribution (GPD) is used for the upper tail. We capture within-year seasonality by introducing a daily covariate to the GPD model and allowing the distribution of peak-tide to change over months and years. Skew-surge-peak-tide dependence is accounted for, via a tidal covariate, in the GPD model, and we adjust for skew-surge temporal dependence through the subasymptotic extremal index. We incorporate spatial prior information in our GPD model to reduce the uncertainty associated with the highest return-level estimates. Our results are an improvement on current return-level estimates, with previous methods typically underestimating. We illustrate our method at four U.K. tide gauges

    Observation of an unexpected third receptor molecule in the crystal structure of human interferon-γ receptor complex

    Get PDF
    AbstractBackground: Molecular interactions among cytokines and cytokine receptors form the basis of many cell-signaling pathways relevant to immune function. Interferon-γ (IFN-γ) signals through a multimeric receptor complex consisting of two different but structurally related transmembrane chains: the high-affinity receptor-binding subunit (IFN-γRα) and a species-specific accessory factor (AF-1 or IFN-γRβ). In the signaling complex, the two receptors probably interact with one another through their extracellular domains. Understanding the atomic interactions of signaling complexes enhances the ability to control and alter cell signaling and also provides a greater understanding of basic biochemical processes.Results: The crystal structure of the complex of human IFN-γ with the soluble, glycosylated extracellular part of IFN-γRα has been determined at 2.9 Å resolution using multiwavelength anomalous diffraction methods. In addition to the expected 2:1 complex, the crystal structure reveals the presence of a third receptor molecule not directly associated with the IFN-γ dimer. Two distinct intermolecular contacts, involving the edge strands of the C-terminal domains, are observed between this extra receptor and the 2:1 receptor–ligand complex thereby forming a 3:1 complex.Conclusions: The observed interactions in the 2:1 complex of the high-affinity cell-surface receptor with the IFN-γ cytokine are similar to those seen in a previously reported structure where the receptor chains were not glycosylated. The formation of β-sheet packing interactions between pairs of IFN-γRα receptors in these crystals suggests a possible model for receptor oligomerization of Rα and the structurally homologous Rβ receptors in the fully active IFN-γ signaling complex

    White Matter fMRI Activation Cannot Be Treated as a Nuisance Regressor: Overcoming a Historical Blind Spot

    Get PDF
    Despite past controversies, increasing evidence has led to acceptance that white matter activity is detectable using functional magnetic resonance imaging (fMRI). In spite of this, advanced analytic methods continue to be published that reinforce a historic bias against white matter activation by using it as a nuisance regressor. It is important that contemporary analyses overcome this blind spot in whole brain functional imaging, both to ensure that newly developed noise regression techniques are accurate, and to ensure that white matter, a vital and understudied part of the brain, is not ignored in functional neuroimaging studies

    Coherent Manipulation of Quantum Delta-kicked Dynamics: Faster-than-classical Anomalous Diffusion

    Full text link
    Large transporting regular islands are found in the classical phase space of a modified kicked rotor system in which the kicking potential is reversed after every two kicks. The corresponding quantum system, for a variety of system parameters and over long time scales, is shown to display energy absorption that is significantly faster than that associated with the underlying classical anomalous diffusion. The results are of interest to both areas of quantum chaos and quantum control.Comment: 6 pages, 4 figures, to appear in Physical Review

    The Effect of a Tropical Climate on Available Nutrient Resources to Springs in Ophiolite-Hosted, Deep Biosphere Ecosystems in the Philippines

    Get PDF
    Springs hosted in ophiolites are often affected by serpentinization processes. The characteristically low DIC and high CH4 and H2 gas concentrations of serpentinizing ecosystems have led to interest in hydrogen based metabolisms in these subsurface biomes. However, a true subsurface signature can be difficult to identify in surface expressions such as serpentinizing springs. Here, we explore carbon and nitrogen resources in serpentinization impacted springs in the tropical climate of the Zambales and Palawan ophiolites in the Philippines, with a focus on surface vs. subsurface processes and exogenous vs. endogenous nutrient input. Isotopic signatures in spring fluids, biomass, and carbonates were examined to identify sources and sinks of carbon and nitrogen, carbonate geochemistry, and the effect of seasonal precipitation. Seasonality affected biomass production in both low flow and high flow spring systems. Changes in meteorological precipitation affected δ13CDIC and δ13CDOC values of the spring fluids, which reflected seasonal gain/loss of atmospheric influence and changes in exogenous DOC input. The primary carbon source in high flow systems was variable, with DOC contributing to biomass in many springs, and a mix of DIC and carbonates contributing to biomass in select locations. However, primary carbon resources in low flow systems may depend more on endogenous than exogenous carbon, even in high precipitation seasons. Isotopic evidence for nitrogen fixation was identified, with seasonal influence only seen in low flow systems. Carbonate formation was found to occur as a mixture of recrystallization/recycling of older carbonates and rapid mineral precipitation (depending on the system), with highly δ13C and δ18O depleted carbonates occurring in many locations. Subsurface signatures (e.g., low DOC influence on Cbiomass) were most apparent in the driest seasons and lowest flow systems, indicating locations where metabolic processes divorced from surface influences (including hydrogen based metabolisms) are most likely to be occurring
    • …
    corecore