23 research outputs found

    NTPDases in the neuroendocrine hypothalamus: Possible energy regulators of the positive gonadotrophin feedback

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain-derived ectonucleoside triphosphate diphosphohydrolases (NTPDases) have been known as plasma membrane-incorporated enzymes with their ATP-hydrolyzing domain outside of the cell. As such, these enzymes are thought to regulate purinergic intercellular signaling by hydrolyzing ATP to ADP-AMP, thus regulating the availability of specific ligands for various P2X and P2Y purinergic receptors. The role of NTPDases in the central nervous system is little understood. The two major reasons are the insufficient knowledge of the precise localization of these enzymes in neural structures, and the lack of specific inhibitors for the various NTPDases. To fill these gaps, we recently studied the presence of neuron-specific NTPDase3 in the mitochondria of hypothalamic excitatory neurons by morphological and functional methods. Results from those studies suggested that intramitochondrial regulation of ATP levels may play a permissive role in the neural regulation of physiological functions by tuning the level of ATP-carried energy that is needed for neuronal functions, such as neurotransmission and/or intracellular signaling.</p> <p>Presentation of the hypothesis</p> <p>In the lack of highly specific inhibitors, the determination of the precise function and role of NTPDases is hardly feasable. Yet, here we attempt to find an approach to investigate a possible role for hypothalamic NTPDase3 in the initiation of the midcycle luteinizing hormone (LH) surge, as such a biological role was implied by our recent findings. Here we hypothesize that NTPDase-activity in neurons of the AN may play a permissive role in the regulation of the estrogen-induced pituitary LH-surge.</p> <p>Testing the hypothesis</p> <p>We propose to test our hypothesis on ovariectomized rats, by stereotaxically injecting 17beta-estradiol and/or an NTPDase-inhibitor into the arcuate nucleus and determine the consequential levels of blood LH, mitochondrial respiration rates from arcuate nucleus synaptosomal preparations, NTPDase3-expression from arcuate nucleus tissue samples, all compared to sham and intact controls.</p> <p>Implications of the hypothesis</p> <p>Results from these studies may lead to the conclusion that estrogen may modulate the activity of mitochondrial, synapse-linked NTPDase3, and may show a correlation between mitochondrial NTPDase3-activity and the regulation of LH-release by estrogen.</p

    Screening Estrogenic Activities of Chemicals or Mixtures In Vivo Using Transgenic (cyp19a1b-GFP) Zebrafish Embryos

    Get PDF
    The tg(cyp19a1b-GFP) transgenic zebrafish expresses GFP (green fluorescent protein) under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i) it is only expressed in radial glial progenitors in the brain of fish and (ii) it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture), including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective

    Bisphenol A and 17β-Estradiol Promote Arrhythmia in the Female Heart via Alteration of Calcium Handling

    Get PDF
    There is wide-spread human exposure to bisphenol A (BPA), a ubiquitous estrogenic endocrine disruptor that has been implicated as having potentially harmful effects on human heart health. Higher urine BPA concentrations have been shown to be associated with cardiovascular diseases in humans. However, neither the nature nor the mechanism(s) of BPA action on the heart are understood. leak suppressed estrogen-induced triggered activities. The rapid response of female myocytes to estrogens was abolished in an estrogen receptor (ER) β knockout mouse model. leak. Our study provides the first experimental evidence suggesting that exposure to estrogenic endocrine disrupting chemicals and the unique sensitivity of female hearts to estrogens may play a role in arrhythmogenesis in the female heart

    Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens.</p> <p>Methods</p> <p>We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH<sub>3</sub>/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively).</p> <p>Results</p> <p>All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses.</p> <p>Conclusions</p> <p>Responses mediated by endogenous estrogens representing different life stages are vulnerable to very low concentrations of these structurally related xenoestrogens. Because of their non-classical dose-responses, they must be studied in detail to pinpoint effective concentrations and the directions of response changes.</p

    Oestrogens in the mammalian brain: From conception to adulthood — A review

    No full text
    Environmental and plant oestrogens have been identified as compounds that when ingested, disrupt the physiological pathways of endogenous oestrogen actions and thus, act as agonists or antagonists of oestrogen. Although the risks of exposure to exogenous oestrogens (ExEs) are subject to scientific debate, the question of how ExE exposure affects the central nervous system remains to be answered. We attempt to summarise the mechanisms of oestrogenic effects in the central nervous tissue with the purpose to highlight the avenues potentially used by ExEs. The genomic and rapid, non-genomic cellular pathways activated by oestrogen are listed and discussed together with the best known interneuronal mechanisms of oestrogenic effects. Because the effects of oestrogen on the brain seem to be age dependent, we also found it necessary to put the age-dependent oestrogenic effects in parallel to their intra-and intercellular mechanisms of action. Finally, considering the practical risks of human ExE exposure, we briefly discuss the human significance of this matter. We believe this short review of the topic became necessary because recent data suggest new fields and pathways for endogenous oestrogen actions and have generated the concern that the hidden exposure of humans and domestic animal species to ExEs may also exert its beneficial and/or adverse effects through these avenues

    Oestrogen-induced changes in the synaptology of the monkey (Cercopithecus aethiops) arcuate nucleus during gonadotropin feedback

    No full text
    To assess their role in the regulation of gonadotropin secretion in primates, we determined the number of synaptic connections on gondotropin releasing hormone (GnRH)- and non-GnRH neurones of the arcuate nucleus of ovariectomized (OVX) and OVX plus oestradiol benzoate-treated African green monkeys. After 24 h (day 1), 48 h (day 2) and 8 days (day 8), we performed immunostaining for GnRH. Using electron microscopy, synapses on GnRH- and randomly selected non-GnRH neurones were counted and characterized according to the classification of Gray (symmetric/inhibitory or asymmetric/excitatory). Serum concentrations of oestradiol (OVX) needed to 232 pg/ml on day 1, 63 pg/ml on day 2 and 45 pg/ml on day 8. Concentrations of luteinizing hormone (LH) fell after ovariectomy to 9μg/ml on day 1, surged to 93μg/ml on day 2 and declined again by day 8. (a) Ten days after ovariectomy, there were no synapses on GnRH neurones, whereas non-GnRH cells received substantial inhibitory innervation and moderate excitatory input. (b) On day 1, GnRH neurones had highest numbers of inhibitory synapses, while inhibitory synapses on non-GnRH neurones decreased, whereas numbers of excitatory synapses remained relatively unchanged compared to OVX monkeys. (c) By day 2, synapses on GnRH neurones decreased, while synapses increased on non-GnRH cells compared to day 1. (d) On day 8, the most pronounced alteration on GnRH cells was an elevated inhibitory input while non-GnRH neurones received the fewest synapses compared to day 2. We conclude that during an oestrogen-induced LH surge, synapses on GnRH- and mixed non-GnRH neurones are differentially regulated. These findings suggest that oestrogen modulation of arcuate nucleus synapses may be important in the regulation of gonadotropin secretion in monkeys.Peer Reviewe

    Estrogen-induced hypothalamic synaptic plasticity and pituitary sensitization in the control of the estrogen-induced gonadotrophin surge

    No full text
    Proper gonadal function requires coordinated (feedback) interactions between the gonads, adenohypophysis, and brain: the gonads elaborate sex steroids (progestins, androgens, and estrogens) and proteins (inhibin-activin family) during gamete development. In both sexes, the brain-pituitary gonadotrophin-regulating interaction is coordinated by estradiol through its opposing actions on pituitary gonadotrophs (sensitization of the response to gonadotrophin-releasing hormone [GnRH]) versus hypothalamic neurons (inhibition of GnRH secretion). This dynamic tension between the gonadotrophs and the GnRH cells in the brain regulates the circulating gonadotrophins and is termed reciprocal/negative feedback. In females, reciprocal/negative feedback dominates ∼90% of the ovarian cycle. In a spectacular exception, the dynamic tension is broken during the surge of circulating estrogen that marks follicle and oocyte(s) maturation. The cause is an estradiol-induced disinhibition of the GnRH neurons that releases GnRH secretion to the highly sensitized pituitary gonadotrophs that in turn release the gonadotrophin surge (the estrogen-induced gonadotrophin surge [EIGS], also known as positive feedback). Studies during the past 4 decades have shown this disinhibition to result from estrogen-induced synaptic plasticity (EISP), including a reversible ∼ 50% loss in arcuate nucleus synapses. The disinhibited GnRH secretion occurs during maximal gonadotroph sensitization and results in the EIGS. Specific immunoneutralization of estradiol blocks the EISP and EIGS. The EISP is accompanied by increases in insulinlike growth factor 1, polysialylated neural cell adhesion molecule, and ezrin, 3 proteins that the authors believe are the links between estrogen-induced astroglial extension and the EISP that releases GnRH secretion at the moment of maximal sensitization of the pituitary gonadotrophs. The result is the paradoxical surge of gonadotrophins at the peak of ovarian estrogen secretion and the triggering of ovulation. This enhanced understanding of the mechanics of gonadotrophin control clarifies elements of the involved feedback loops and opens the way to a better understanding of the neurobiology of reproduction. © 2007 by the Society for Gynecologic Investigation.Peer Reviewe
    corecore